
-
STANBWIDE TRAVBL-TVMLP DATA CODHBCHIDN \& ANAIWYSIS
FINATHBRIPDRI 2007-2009

Acknowledgements

Our thanks to the following staff who have contributed to the successful completion of the third and final year of this project:

- David Reeves
- Mehdi Baziar
- Tim Baker
- Aaron Moss
- Juan Robles
- Dave Shrank
- Stan Young
- Navin Nageli
- Pradeep Nimmatoori
- Lance Goeddel
- Danny Montoya
- Leonid Chacikjanc

Colorado Department of Transportation, Project Manager
Colorado Department of Transportation
Colorado Department of Transportation
Colorado Department of Transportation
Colorado Department of Transportation
Texas Transportation Institute
University of Maryland
Navjoy, Project Officer
Navjoy, Project Manager
Navjoy, Data Collection Manager
Navjoy, Project Engineer
Navjoy, Project Engineer

In addition, our special thanks to staff from CDOT Regions and the ITS Branch for participating in this project.

Table of Contents

Executive Summary iv
Section 1: Introduction 1
1.1 Background 1
1.2 Project Purpose and Methodology 1
1.3 Anticipated Use of Travel Time Data and Report 2
Section 2: Results 3
2.1 Historical Comparison of Travel Times 3
2.2 Travel Rate Index Corridor Comparisons 4
2.3 Travel Time Variability Corridor Comparisons 4
2.4 HOV/HOT Travel Time Comparisons 5
2.5 Transit Data 5
2.6 I-70 Corridor Winter Data Collection 5
2.7 Congestion Costs 5
2.8 3 Year Comparisons of Corridor Measures 6
2.9 Corridor Reports 7
Section 3: Conclusions 8
3.1 Project Benefits 8
3.2 Challenges Encountered and Lessons Learned 8
3.3 Future Year(s) Data Collection 8
Glossary 10
List of Appendices
Appendix A - Statewide Travel Time Corridor List
Appendix B - Project MethodologyAppendix C - Historical Composite Travel Time Comparisons
Appendix D - TRI Comparisons
Appendix E - TTV Comparisons
Appendix F - HOV/HOT Travel Time Comparisons
Appendix G - Individual Corridor Reports
Appendix H - I-70 Winter Travel Time Report
Appendix I- Overall Corridor Measures Table

List of Tables

Table 1: 2007-2009 Interstate Corridor List. A-1
Table 2: 2007-2009 US Highway Corridor List A-2
Table 3: 2007-2009 State Highway Corridor List A-4
Table 4: Travel Time Delay Codes B-2
Table 5: Historical Composite Travel Times. C-1
Table 6: Interstate Travel Rate Index for AM Commuter \& Saturday Recreational Peaks. D-1
Table 7: Interstate Travel Rate Index for PM Commuter \& Sunday Recreational Peaks D-1
Table 8: US Hwy Travel Rate Index for AM Commuter \& Saturday Recreational Peaks D-2
Table 9: US Hwy Travel Rate Index for PM Commuter \& Sunday Recreational Peaks D-3
Table 10: State Hwy Travel Rate Index for AM Commuter \& Saturday Recreational Peaks. D-4
Table 11: State Hwy Travel Rate Index for PM Commuter \& Sunday Recreational Peaks D-5
Table 12: Interstate Travel Time Variability for AM Commuter \& Saturday Recreational Peaks E-1
Table 13: Interstate Travel Time Variability for PM Commuter \& Sunday Recreational Peaks E-1
Table 14: US Highway Travel Time Variability for AM Commuter \& Saturday Recreational Peaks E-2
Table 15: US Highway Travel Time Variability for PM Commuter \& Sunday Recreational Peaks E-3
Table 16: State Highway Travel Time Variability for AM Commuter \& Saturday Recreational Peaks E-4
Table 17: State Highway Travel Time Variability for PM Commuter \& Sunday Recreational Peaks E-5
Table 18: 2009 HOV/HOT Travel Time Comparisons F-1
Table 19: 3-Year HOV/HOT and General Lanes Trend Analysis F-3
Table 20: Overall Corridor Measures H-1

Executive Summary

Background and Purpose

Traffic congestion is one of the most significant issues adversely impacting mobility on highways across the state of Colorado. Roadway congestion can lead to increased crashes, increased driver stress, and a reduced quality of life. One of the primary steps to addressing congestion is to understand when and where it is occurring on the transportation network. Within CDOT, the Division of Transportation Development (DTD) is responsible for the development and collection of mobility performance measures to quantify how well corridors operate in relation to the volume of vehicles that use them.

The purpose of this project was to collect and analyze travel time data for 71 congested corridors (volume to capacity ratio ≥ 0.85) representing nearly 845 miles of highways in Colorado over three consecutive years. This allows CDOT to establish baseline conditions for each corridor and to monitor performance on congested corridors on an annual basis. It also aids in the development of a congestion management system and resource allocation process to address congestion within the State. This year (2009) was the third and final year of the project.

Data collection and analysis for 2009 was performed similar to the project's first two years (2007 \& 2008) for all project corridors. This year's project also included data collection for the I-70 (C-470 to SH 9) corridor during the peak winter ski season similar to Year 2008 season.

Project Results Summary

Several corridor performance measures were developed for each of the congested corridors in the report and the following includes the 3-year comparison highlights for each measure.

- Historical comparison of travel times - Of the 71 corridors sampled, 35 corridors (49 percent) showed increased travel times during peak time periods.
- Travel Rate Index (TRI) comparison - 36 corridors (51 percent) had a peak period TRI value of 1.20 or more for all three years. This means a trip during a peak period takes at least 20 percent longer than the same trip in the off-peak time period.
- Travel Time Variability (TTV) comparison - 15 corridors (21 percent) had a peak period TTV value of 50 percent or more for all three years. This indicates that a trip can take one-half times as long or longer as another trip during the same time period.
- Overall Congestion Costs - Based on an estimated total person hours of delay over the three year project life are 167 million hours, the total congestion costs are estimated at $\$ 2.6$ billion over the 3 -year period. This is based on a person time value of $\$ 15.50$ per hour used for 2007 and $\$ 16.00$ per hour used for 2008 and 2009, as identified in the Annual Urban Mobility reports by the Texas Transportation Institute.
- I-70 Corridor (winter ski season) Comparison - The average travel time for the eastbound direction is increased by 24% from year 2008. The average travel time for the westbound direction is decreased by 4% from year 2008. The annual congestion cost as a result of increase in annual vehicle hours of delay increased almost 1.5 times from \$95 million to $\$ 145$ million.

Section 1: Introduction

This report summarizes the results of the third consecutive and final year of the Colorado Department of Transportation's (CDOT) Statewide Travel Time Data Collection and Analysis project for the Year 2009. Additionally, this report provides summary highlights of three-year data comparisons for project corridors.

1.1 Background

Traffic congestion is one of the most significant issues adversely impacting mobility on highways across Colorado. CDOT's Division of Transportation Development (DTD) is responsible for the development and collection of mobility performance measures to quantify how well corridors operate in relation to the volume of vehicles that use them.

Traditional methods of measuring performance such as volume to capacity (v / c) ratios, levels of service, etc. are useful but do not always provide a good understanding of corridor performance. These measures can also be difficult to relate in lay terms or to the typical traveler and commuter's daily driving experience. Travel time data is increasingly being collected to augment or replace traditional mobility performance measures. Travel time data serves as a useful tool to measure levels of congestion and overall quality of service for corridors. It has the ability to identify areas of congestion and excessive delay, identical to actual driving conditions encountered by the traveling public. CDOT's DTD has conducted travel time studies on select congested corridors (v / c ratio ≥ 0.85) since the year 2000. Over the years, the scope and funding for travel time studies have increased to include many congested corridors in the State. This project (initial project year 2007) was unique in two ways; first in that it included travel time data collection for all congested corridors in Colorado and second in that data collection was to be performed over three consecutive years. It was envisioned that this project would provide a foundation in establishing baseline congested corridor conditions. This year's (2009) project builds upon the first two years of data collection and provides CDOT with three years worth of consecutive travel time data for all 71 identified congested corridors in the State.

In addition to collecting data for all 71 congested corridors, winter travel time data was again collected for the I-70 Corridor to follow-up the winter data collected in 2008. This allows CDOT to evaluate the performance of the corridor over two winter seasons. Similar to last year's project, this year's project also incorporated individual corridor average vehicle occupancy (AVO) values from the CDOT's 2008 AVO study.

1.2 Project Purpose and Methodology

The purpose of this project was to collect and analyze travel time and traffic count data to measure the performance of 71 congested corridors in Colorado over three consecutive years. Of the 71 corridors, there were 60 commuter and 11 recreational corridors. The corridors studied include 13 interstate segments, 30 US highway segments, and 28 state highway segments representing 845 highway centerline miles. A complete list of the 2007 - 2009 project corridors is listed in Tables 1 thru 3 of Appendix A. Tables 1 thru 3 show the corridors by interstates, US
highways, state highways and include corridor mileage, corridor location in CDOT Region(s), and corridor type (commuter or recreational). Travel time data was collected using the floating car method using either Global Positioning System (GPS) or Distance Measuring Instrument (DMI) equipment. Appendix B provides more detailed information about the project methodology.

1.3 Anticipated Use of Travel Time Data and Report

Travel time data allows CDOT staff to monitor performance for congested corridors on an annual basis. It also aids in the development of a congestion management system and resource allocation process to address congestion within the state. Additionally, the data presented in this report will be more easily related to the typical commuters’ driving experience and garner support from both the traveling public and CDOT decision makers.

Having three consecutive years worth of travel time data for all 71 congested corridors provides an excellent baseline to monitor individual corridor performance in the future and is anticipated to be useful for other CDOT purposes. Anticipated uses are diverse and range from indentifying corridor congestion points for mitigation measures to assisting CDOT planners, planning partners and traffic engineers with calibration of any traffic models used to predict traffic growth along the State's highway and street networks.

Section 2: Results

The results of the project are presented in two distinct ways. One way is to compare each corridor against past years data. The other way is to compare corridors against each other using measures such as Travel Rate Index (TRI) and Travel Time Variability (TTV). In addition, project results include HOV/HOT travel time comparisons against general purpose lanes and I70 corridor winter travel time report.

The following sections provide highlights of the project results. Highlights are first presented for year 2009 data collection activities followed by 3-year comparison highlights.

2.1 Historical Comparison of Travel Times

Historical data forms the basis for monitoring a corridor's performance. Composite travel times are the overall average travel time for both directions on a corridor. Appendix C - Table 5 shows the historical comparison of composite travel times. With the completion of this final year of the project, there is now historical data for all 71 corridors based on a minimum of three years of consecutive data collection. The trend calculation is based on comparing the first two years of data and then comparing the next two years and so on and finally averaging the composite calculation based on the total number of years and the data.
The highlights of the historical comparison are listed below:

Commuter Corridors (60 Corridors)

- 31 commuter corridors show an overall composite travel time trend increase for both morning and afternoon peaks.
- 17 commuter corridors show an overall composite travel time trend decrease for both morning and afternoon peaks.
- Of the remaining corridors 3 commuter corridors show an overall composite travel time trend increase for the morning peak period only and 9 commuter corridors show an overall composite travel time trend increase for the afternoon peak period only.

Recreational Corridors (11 Corridors)

- 5 recreational corridors show an overall composite travel time trend increase for both the Saturday and Sunday peak periods.
- 4 recreational corridors show an overall composite travel time trend decrease for both Saturday and Sunday peaks.
- Of the remaining corridors 2 recreational corridors show an overall composite travel time trend increase for the Sunday peak period only.

2.2 Travel Rate Index Corridor Comparisons

TRI is a corridor measure that indicates how long a peak trip takes in comparison to an off-peak trip. TRI is calculated from the ratio of travel time during the peak period time to off peak period time. A TRI value of 1.2 indicates that a trip during a peak period takes 20 percent longer than the same trip in the off-peak period.

$$
\text { TRI Formula }=\mathbf{P P}_{\mathrm{TT}} / \mathrm{OP}_{\mathrm{TT}}
$$

$\mathbf{O P}$ TT $=\left(\mathbf{A}_{\mathrm{L}}+\mathbf{N}_{\mathrm{L}}+\mathbf{P}_{\mathrm{L}}\right) / \mathbf{3}$
$\mathbf{A}_{\mathbf{L}}$ - Lowest AM/Saturday peak trip (by direction)
$\mathbf{N}_{\mathbf{L}}$ - Lowest noon-peak/Sat-Sun off-peak trip (by direction)
$\mathbf{P}_{\mathbf{L}}$ - Lowest PM/Sunday peak trip by direction
$\mathbf{O P}_{\mathbf{T T}}$ - Off-peak trip time equivalent
$\mathbf{P P}_{\text {TT }}$ - Peak period travel time
Appendix D - Tables 6 through 11 show the TRI values for interstates, US highways and state highways for both commuter and recreational corridors.

- For commuter corridors (regardless of interstate, US highway or state highway), TRI values are generally higher in the PM peak as compared to the AM peak.
- For recreational corridors, TRI values for interstates and US highways are generally higher in the Sunday peak as compared to the Saturday peak period. However, TRI values for state highways are generally higher in the Saturday peak as compared to the Sunday peak.
- There were 21 commuter corridors that had a TRI value of 1.2 or more during the AM peak period as compared to 25 last year.
- There were 34 commuter corridors that had a TRI value of 1.2 or more during the PM peak period as compared to 45 last year.
- There were 2 recreational corridors that had a TRI value of 1.2 or more during Saturday peak period similar to last year.
- There were 2 recreational corridors that had a TRI value of 1.2 or more during Sunday peak period as compared to one last year.

2.3 Travel Time Variability Corridor Comparisons

TTV is a corridor measure that indicates how much variability exists between the highest and lowest travel time runs during the peak periods. A value of 100 percent indicates that a trip can take twice as long as another trip on the same corridor during the same time period. TTV indicates the relative reliability of travel times during the peak period. Appendix E - Tables 12 to 17 show TTV values for interstates, US highways and state highways for both commuter and recreational corridors.

- For commuter corridors (regardless of interstate, US highway or state highway), TTV values are generally higher in the PM peak as compared to the AM peak.
- For recreational corridors (regardless of interstate, US highway or state highway), TTV values are generally higher in the Sunday peak as compared to the Saturday peak.

2.4 HOV/HOT Travel Time Comparisons

As part of the project, travel times were collected for the HOV/HOT lanes and general purpose lanes on I-25, US 36 and US 85 corridors during morning and afternoon peak periods. Appendix F - Table 18 shows the detailed comparison of 2009 travel times and includes the general limits and time periods of operation for the HOV/HOT lanes. Table 19 in Appendix F shows the threeyear trend analysis for the HOV/HOT lanes. The following are highlights of the comparison:

- On the I-25 corridor, the travel times in HOV/HOT lanes were 41 and 28 percent lower than general purpose lanes in the AM and PM peak periods, respectively.
- On the US-36 corridor, the travel times in HOV/HOT lanes were 26 percent lower than general purpose lanes in the AM peak periods. There was no change for the PM peak periods.
- On the US-85 corridor, the travel times in HOV lanes were 14 and 31 percent lower than general purpose lanes in the AM and PM peak periods, respectively.

2.5 Transit Data

Transit data was collected in 2007. However, it was determined that no meaningful conclusions could have been drawn from 2007 data. Therefore, it was agreed that transit data collection would be dropped for subsequent years of this project.

2.6 I-70 Corridor Winter Data Collection

Travel times were collected along the I-70 (C-470 to SH 9) corridor during the winter season (January, 2010). Appendix H details the I-70 winter corridor travel time data. The highlights of the travel time data collection are listed below:

- Sunday evening peak I-70 eastbound travel times (4-7pm) averaged the longest time and also incurred the most delay.
- Westbound I-70 delay incurred by inbound ski-traffic tends to occur between Floyd Hill and the US 40 Empire exit.
- I-70 eastbound delay incurred by returning ski traffic tends to occur leading up to the Eisenhower Tunnel and between Georgetown and Idaho Springs.

2.7 Congestion Costs

The methodology employed by this project to calculate high-level congestion costs is simple and consistent. It is based on broad assumptions and does not include trips diverted or postponed due to congestion, costs to general business, commercial trucking and tourism, etc. Using the travel time data collected for each corridor, the average vehicle delay during the day was determined. It was assumed that this average delay would be encountered by the daily traffic traveling the corridor to obtain the average vehicle hours of delay. A vehicle occupancy rate was then used to
determine person hours of delay. Unlike the first year's project, where a standard vehicle occupancy rate of 1.1 was used, a corridor specific average vehicle occupancy (AVO) rate was used similar to last years project. These corridor specific AVO numbers were taken from the 2008 Average Vehicle Occupancy Study of the State Highway System completed in July, 2008. It is acknowledged that these values are based on weekday data, and this is a limitation when applied to recreational corridors, whose data was collected during weekends. Unfortunately, no weekend AVO data is available. In order to determine the congestion costs, the project used a value of a person's time at $\$ 16.00$ per hour, as reported by the Texas Transportation Institute (TTI) June 2009 report. The value of time in 2007 was $\$ 15.50$ but in 2008 and 2009 it was increased to $\$ 16.00$.

For the 71 corridors included in this project, the annual vehicle hours of delay are estimated at 52 million. The annual person hours of delay are estimated at 64 million. The annual congestion costs for interstates, US highways and state highways are $\$ 374, \$ 393$ and $\$ 254$ million, respectively. The total annual congestion costs for all corridors included in this project are estimated at $\$ 1$ billion.

Similar to the first two year's travel time studies, congestion and delay were measured using travel times from several travel time runs through the various corridors using the floating car methodology. Delay for the average day was obtained from the difference between a calculated travel time using posted speed limits and the observed average travel times. An annual congestion cost was then obtained from the average daily delay. This study does not predict future congestion but rather attempts to create a good base travel time and associated delay that can then be used to track differences between modeled versus actual data. In CDOT's 2035 Statewide Transportation Plan, congestion was modeled using all 2005 congested roads and applying a travel time formula to get a congestion time for the average commuter traveling these corridors in 2035. A similar calculation was used to obtain delay averages in minutes per person for 2035 using expected congestion levels for the same group of segments used to calculate 2035 delays. Because of the differences in actual versus modeled data, methodologies and associated assumptions used, there are differences in the congestion totals from this comprehensive travel time study versus the 2035 Statewide Transportation Plan.

2.8 Three Year Comparisons of Corridor Measures

- Travel Rate Index (TRI) comparison - Of the 71 corridors sampled, 36 corridors (51 percent) had a peak period TRI value of 1.20 or more for all three years. This means a trip during a peak period takes at least 20 percent longer than the same trip in the offpeak period.
- Travel Time Variability (TTV) comparison - 15 corridors (21 percent) had a peak period TTV value of 50 percent or more for all three years. This indicates that a trip can take one-half times as long or longer as another trip on the same corridor during the same period.
- Overall Congestion Costs - Estimated total person hours of delay for the project life are 167 million hours, this equates to a total estimated congestion cost of $\$ 2.6$ billion for all project corridors. Congestion costs are based on a person time value of $\$ 15.50$ per hour
used for 2007 and $\$ 16.00$ per hour used for 2008 and 2009, as identified in the Annual Urban Mobility reports by the Texas Transportation Institute.

2.9 Corridor Reports

Individual corridor reports for the 71 corridors studied in this project are contained in Appendix G. Each corridor report includes a short summary, corridor map, corridor characteristics and performance measures on the first page from data collected in 2009. Additionally, a second page highlights 3 years worth of corridor travel times by direction, annual corridor congestion costs and hours of delay as well as corridor trends based off of three years of consecutive data. Appendix I - Table 20 shows key corridor measures for all 71 corridors for all three years worth of data collection.

Section 3: Conclusions

3.1 Project Benefits

This project represents the third consecutive and final year that CDOT has collected data on all of the congested corridors in Colorado and the first time CDOT has had the opportunity to examine corridor performance with additional measures (i.e. Travel Time Variability, congestion costs, etc). The individual corridor reports provide a concise and comprehensive snap shot of corridor performance for both year 2009 data collection as well as 3 year comparison highlights.

As a result, this year's project builds upon the last two years data and forms the basis for CDOT to focus in on several additional operational measures as they relate to corridor and system performance. These additional measures are more aligned with the typical corridor driving experience of the traveling public. This project's data collection will also help CDOT develop baseline conditions for all congested corridors in the State and provide a basis for evaluating corridor performance as traffic volumes continue to change in the future. Finally, in view of budgetary concerns facing the State, CDOT can use this projects data to selectively choose corridors to monitor in the future as well as to augment other CDOT project data needs.

3.2 Challenges Encountered and Lessons Learned

Accidents and weather were the two most common factors that adversely impacted travel time data collection. Accidents contributed more towards lost data collection than weather. Typically, both factors were overcome by building slack in the data collection schedule. When accidents were encountered, travel time data was still collected and analyzed to provide CDOT with a perspective on potential delays due to such incidents but were omitted from the corridor performance measures calculations.

As with special events in the Denver area, local events along corridors outside the Denver area had a serious impact on corridor performance. Local events varied from fairs, bike races, running races, main street bazaars, to craft shows. These events are not as easily identifiable before scheduling data collection. When such local events were encountered, data collection was postponed to a later date.

3.3 Future Year(s) Data Collection

With the completion of this multi-year project, future annual data collection activities may not be warranted or economically feasible for every corridor. Based on the data collected for this project, CDOT can selectively choose to monitor fewer corridors on an annual or other basis in the future.

CDOT should explore emerging technologies that are able to capture congestion and travel time using mobile devices with built-in GPS equipment. It is not clear if the data from such devices will offer the level of granularity as the project methodology.

CDOT Statewide Travel Time Data Collection and Analysis Project

 Data Collection Year 2009Any future data collection would help augment data collected for this project, which is anticipated to help form the basis for populating a Congestion Management System (CMS) and assist with a resource allocation process within CDOT. If resources are constrained, CDOT should give higher priority for future data collection to corridors that show higher travel time variability and higher travel time indices.

Regardless of the data source, organization, filing and access of travel time data are significantly important due to the sheer volume of data being collected. Data logically archived also facilitates the ease of transfer into a CMS database or other resource allocation tools.

Glossary

AM Peak Period - 7 AM to 9 AM on a typical weekday
AVO - Average Vehicle Occupancy - Based on the 2008 Average Vehicle Occupancy Study of the Colorado State Highway System

CDOT - Colorado Department of Transportation
CMS - Congestion Management System
DMI - Distance Measuring Instrument
DTD - Division of Transportation Development
GPS - Global Positioning System
HOV - High Occupancy Vehicle
HOT - High Occupancy Toll
Noon Peak Period - 11 AM to 1 PM on a typical weekday
PM Peak Period - 4 PM to 6 PM on a typical weekday
Recreational Peak Period - 11:30 AM to 5:30 PM on Saturday and Sunday
Recreational Off-Peak Period - 9:30 to 11:30 AM and 5:30 to 7:30 PM on Saturday and Sunday

T-REX - Transportation Expansion Project
TRI - Travel Rate Index
TTI - Texas Transportation Institute
TTV - Travel Time Variability
v/c Ratio - Volume to Capacity ratio

Table 1: 2007-2009 Interstate Corridor List

No.	Corridor	Limits	Mileage	CDOT Engineering Region	Corridor Type
1	I-25	Lincoln Ave. to Broadway	14.0	6	Commuter
2	I-25	Broadway to US 36	11.3	6	Commuter
3	I-25	Lincoln Ave. to Meadows Pkwy.	8.7	1,6	Commuter
4	I-25	S. Academy Blvd. to N. Gate Rd.	20.3	2	Commuter
5	I-25	US 36 to SH 14	52.3	4,6	Commuter
6	I-70	C-470 to I-25	13.1	6	Commuter
7	I-70	I-25 to Peña Blvd.	10.3	6	Commuter
8	I-70	SH 9 to C-470	55.6	1,6	Recreational
9	I-70	Edwards to Vail East Exit	27.8	3	Recreational
10	I-70	Rifle to No Name Interchange	5.1	3	Recreational
11	I-76	I-25 to I-70	12.0	6	Commuter
12	I-225	I-70 to I-25	5.0	6	Commuter
13	I-270	I-70 to I-76	$\mathbf{2 5 2 . 5}$	6	Commuter
	13 Interstate Corridors				

CDOT Statewide Travel-Time Data Collection and Analysis Project
Appendix A-2007-2009 Statewide Travel Time Corridor List

Table 2: 2007-2009 US Highway Corridor List

No.	Corridor	Limits	Mileage	$\begin{gathered} \hline \text { CDOT } \\ \text { Engineering } \\ \text { Region } \\ \hline \end{gathered}$	Corridor Type
14	US 6	I-70 to I-25	8.9	6	Commuter
15	US 6-North Ave.	1st St. to I-70 Business	4.1	3	Commuter
16	US 6-Vasquez Blvd.	56th Ave. to 77th Ave.	2.9	6	Commuter
17	US 6/ SH 119	SH 93 to Gregory St.	19.1	1	Recreational
18	US 24	SH 67 to I-25	25.0	2	Commuter
19	US 34	US 287 to US 85	21.2	4	Commuter
20	US 34	CR 63 to CR 43	7.4	4	Recreational
21	US 36	Canyon Blvd. to SH 157	2.9	4	Commuter
22	US 36	SH 157 to I-25	18.1	4,6	Commuter
23	US 36	SH 66 to Canyon Blvd.	14.8	4	Commuter
24	US 40	CR 129 to Pine Grove Rd.	3.3	3	Recreational
25	US 40	CR 8/5 to I-70	31.1	1,3	Recreational
26	US 50	Ute Ave. to 27.00 Rd.	2.0	3	Commuter
27	US 50	Purcell Blvd. to Fortino Blvd.	4.0	2	Commuter
28	US 50	SH 141 to 27.00 Rd.	4.6	3	Commuter
29	US 85	I-76 to US 34	38.8	4,6	Commuter
30	US 85-Santa Fe Dr.	Highlands Ranch Pkwy. to SH 40	14.8	1,6	Commuter
31	US 85	Meadows Pkwy. to Highlands Ranch Pkwy.	13.4	1	Commuter
32	US 160	CR 2301 to CR 25	2.4	5	Commuter
33	US 160	CR 207 to US 550 South	7.7	5	Commuter
34	US 160	US 550 to US 160 Business	15.2	5	Commuter
35	US 285-Hampden Ave.	US 85 to I-25	4.6	6	Commuter
36	US 285-Hampden Ave.	SH 121 to US 85	4.5	6	Commuter
37	US 287-S. College Ave.	Drake Rd. to Mulberry St.	2.0	4	Commuter

Consulting Services, Inc

Table 2: 2007-2009 US Highway Corridor List Continued

No.	Corridor	Limits	Mileage	CDOT Engineering Region	Corridor Type
38	US 287	US 36 to Nickel St.	9.6	4,6	Commuter
39	US 287	Midway Blvd. to US 34	35.2	4,6	Commuter
40	US 287-Federal Blvd.	US 40 to US 36	6.8	6	Commuter
41	US 550	US 160 North to 25th St.	1.7	5	Commuter
42	US 550	CR 220 to US 160 South	0.8	5	Commuter
43	US 550	CR 203A to CR 250	9.9	5	Commuter
	30 US Highway Corridors	Total miles	336.8		

CDOT Statewide Travel-Time Data Collection and Analysis Project
Appendix A-2007-2009 Statewide Travel Time Corridor List

Table 3: 2007-2009 State Highway Corridor List

No.	Corridor	Limits	Mileage	CDOT Engineering Region	Corridor Type
44	C-470	SH 121 to I-70	13.9	6	Commuter
45	C-470	SH 121 to I-25	11.5	6	Commuter
46	SH 2-Colorado Blvd.	US 285 to I-70	8.8	6	Commuter
47	SH 2	72nd Ave. to 96th Ave.	4.0	6	Commuter
48	SH 7-Arapahoe Rd.	Cherryvale Rd. to US 287	5.9	4	Commuter
49	SH 7-Baseline Rd.	US 287 to I-25	6.9	6	Commuter
50	SH 9	I-70 to CR 1900	2.5	1	Recreational
51	SH 9	I-70 to Boreas Pass Rd.	11.1	1	Recreational
52	SH 30	I-25 to I-225	10.0	6	Commuter
53	SH 30	I-225 to Hampden Ave.	9.5	6	Commuter
54	SH 45-Pueblo Blvd.	Lehigh St. to SH 96	1.2	2	Commuter
55	SH 82	I-70 to Old SH 82	23.7	3	Recreational
56	SH 82	Old SH 82 to West Hallam Ave.	16.7	3	Recreational
57	SH 83-Parker Rd.	I-225 to SH 2	6.7	6	Commuter
58	SH 83-Parker Rd.	Lincoln Ave. to I-225	9.6	1,6	Commuter
59	SH 88-Arapahoe Rd.	I-25 to SH 83	4.5	6	Commuter
60	SH 88-Belleview	SH 88/Federal to I-25	6.7	6	Commuter
61	SH 88-Federal Blvd.	US 6 to US 285	5.2	6	Commuter
62	SH 93	SH 58/US 6 to US 36	18.3	4,6	Commuter
63	SH 95-Sheridan Blvd.	US 285 to I-70	9.1	6	Commuter
64	SH 95-Sheridan Blvd.	I-70 to US 36	5.3	6	Commuter
65	SH 119-Diagonal Hwy.	US 287 to I-25	6.8	4	Commuter
66	SH 119	Sugarloaf Rd. to Broadway St.	5.3	4	Commuter

Consulting Services, Inc

CDOT Statewide Travel-Time Data Collection and Analysis Project

Appendix A-2007-2009 Statewide Travel Time Corridor List
Table 3: 2007-2009 State Highway Corridor List Continued

No.	Corridor	Cimits Mileage	CDOT Engineering Region	Corridor Type	
67	SH 119-Diagonal Hwy.	US 36 to US 287	12.0	4	Commuter
68	SH 121-Wadsworth Blvd.	US 40/Colfax to US 36	12.9	6	Commuter
69	SH 121-Wadsworth Blvd.	C-470 to US 40/Colfax	13.2	6	Commuter
70	SH 177- S. University Blvd.	C-470/Lincoln Ave. to I-25	8.6	6	Commuter
71	SH 340	20 3/4 Rd. to I-70 Business	5.7	3	Commuter
	28 State Highway Corridors		$\mathbf{2 5 5 . 6}$		

This section discusses the data collection and analysis methodologies. The data collection methodology details how data was collected from start to completion of the project while the analysis methodology details how the raw data was processed.

B. 1 Data Collection

This project used the floating car method to collect travel time data. In a floating car study a data collection vehicle with Global Positioning System (GPS) or Distance Measuring Instrument (DMI) equipment travels the study corridor at the same speeds in relation to normal commuters on the corridor. For this project the majority of travel time data was collected using GPS equipment. DMI equipment was used on corridors with poor GPS signal reception, i.e. corridors with tunnels and canyons. Relevant data (travel time, speed, and delay) is then extrapolated from each set of travel time runs for a specified corridor and sample period.

Travel time data collection started in April and continued until December 2009. Data collection adhered to strict guidelines to ensure that it was consistent with previous collection methods and best represented existing conditions encountered by the typical motorist. The following data collection guidelines were used.

B.1.1 Travel Time Data Collection Guidelines

- Commuter corridor data collection - Travel times for commuter corridors were collected for morning (7-9 am), noon (11 am - 1 pm), and afternoon ($4-6 \mathrm{pm}$) peak periods. Travel time data was only collected Tuesday through Thursday to avoid variations in traffic patterns associated with the start and end of the typical work week. Commuter travel time data collection took place between April and June, and again between September and December 2009.
- Recreational corridor data collection - Travel times for recreational corridors were collected for Saturday and Sunday peak (11:30 am - 5:30 pm) and off-peak (9:30-11:30 am and 5:30-7:30 pm) periods. Recreational travel time data collection took place in July and August 2009.
- I-70 Winter corridor data collection - Travel times for winter corridor were collected on Saturday and Sunday for morning (westbound 7:00 am - 11:00 am), afternoon (eastbound 4:00 pm - 7:00 pm) and off-peak (eastbound and westbound 11:00 am - 4:00 pm) periods.
- Number of travel runs - Eight travel time runs per period per direction were determined to be the optimal number of travel runs. In the past, CDOT has collected six and in some cases up to twelve travel time runs, but eight runs were determined to provide the best balance for yielding statistically significant data at a reasonable cost. In most instances, eight runs typically result in a margin of error within $1 \mathrm{mph}(+/-)$ at a 95% confidence level.
- Other Considerations
o Holidays - Holidays significantly impact travel patterns and do not provide for typical commuter or recreational driving conditions. Travel time runs were not collected on holidays or the days that immediately preceded or followed the holiday. Data was not collected for the following holidays; Memorial Day, Independence Day, Labor Day, and Columbus Day.
o Special Events - Special events impact corridor traffic patterns often inducing congestion levels far above normal conditions. Special events that potentially could have altered traffic patterns include Colorado Rockies baseball games, the Taste of Colorado, Ride the Rockies bike race, etc. Data was not collected when a special event was noted on a study corridor.
o HOV/HOT Lanes - Travel time data was also collected for high occupancy vehicle/high occupancy toll (HOV/HOT) lanes. Corridors where these lanes exist include I-25, US 36, and US 85. Data was only collected in the segment of the corridor where these special purpose lanes existed. This data enables comparison of the special purpose lanes with adjacent general purpose lanes.
o Delay Codes - Travel time data was collected unless one of the following two conditions was encountered.

1. An accident, construction, or other incident that closes the roadway or causes traffic to be detoured off the roadway.
2. Weather that significantly impacted travel speeds.

Any other type of delay encountered was documented with delay codes for further analysis to either validate or discard the completed travel time run from analysis. Raw data excluded from analysis due to the two above issues was saved and clearly marked. This data may have value in predicting operational characteristics during road closures or adverse weather situations. Delay codes are listed in the table below.

Table 4: Travel Time Delay Codes

CODE	CODE DEFINITION
\mathbf{A}	Accident encountered
\mathbf{C}	Construction encountered
$\mathbf{C G}$	Congestion due to insufficient capacity of roadway or turning movement bay
\mathbf{G}	Any general comment as the cause of slowdown/congestion (i.e.; Sunday drivers, scenic pull off, business entry, animals on the road)
\mathbf{P}	Delay caused by vehicles parking/exiting parking on mainline street
$\mathbf{P B}$	Passenger bus causing delay
$\mathbf{P e d}$	Heavy pedestrian crossing causing delay
\mathbf{R}	On/off ramp causing congestion to mainline
\mathbf{S}	Traffic signal malfunction
$\mathbf{S S}$	Perceived congestion due to incorrect traffic control device

B.1.2 Hourly Traffic Counts

Hourly traffic counts were collected concurrently with travel time data for each corridor. This data gives a picture of the daily vehicle demand on each study corridor during the study period. For corridors less than 5 miles long, traffic counts were collected at one location approximately in the middle of the corridor. For corridors 5 miles or longer, traffic data was collected at three locations; at both ends and approximately in the middle of the corridor. Data was collected for 72 hours continuously at each location for both directions of travel at 1 hour intervals.

B. 2 Analysis Methodology

The analysis methodology approach was to develop specific performance measures from travel time data that allow both individual corridor and system wide comparisons. Comparing individual corridor performance from one year to the next is useful for monitoring a corridor's condition, while comparing one corridor to another allows for monitoring corridors on a relative basis.

Past CDOT travel time studies primarily focused on corridor measures such as composite travel time, average travel time, average speed, average daily traffic, and travel time indices. For the initial project year (2007) report, additional measures were developed to include annual vehicle hours of delay, annual person hours of delay, and annual congestion costs. Additionally, the graphical representation of some measures was enhanced to provide additional data. For this years report the same performance measures were used to insure consistency between comparisons of the two years of data collected. The following is a brief explanation of each corridor performance measure used for the 2007, 2008, and 2009 project analysis.

- High - Low Chart - This chart graphically shows the range of travel time by direction and period. The highest and lowest travel times encountered as well as the average travel time on each corridor are plotted to illustrate travel time variability.
- Travel Rate Index (TRI) - This is the ratio of morning, evening, or weekend peak travel time against off-peak travel time. This indicates how long a peak trip takes in comparison to an off-peak trip in the same direction. NOTE: Off-peak trip times were derived by averaging the lowest travel time trip per period sampled for each data collection period by direction.

\[

\]

- Volume to Capacity (v/c) ratio - This information was provided by CDOT. It is a general indication of how close a corridor is to being at full capacity and is calculated by dividing the demand volume by the available capacity. A v/c ratio of 1 indicates that all of the available capacity is being used by the existing volume.
- Vehicle Counts per Day - This is the three day vehicle volume average for either a single count location or three count locations (for corridors over five miles) during the period of data collection.
- Delay values - Vehicle and person hours of delay based on travel time runs, hourly count averages, and a corridor specific average occupancy value taken from the 2008 CDOT Average Vehicle Occupancy study weighted by corridor attributes (functional classification and region).
- Congestion values - Congestion values are costs incurred by drivers due to delay. This value is calculated from person hours of delay assuming a standard value of time of $\$ 16.00$ per hour (based on the June 2009 publication by the Texas Transportation Institute).

Sample Commuter Corridor Congestion Formula:

Annual congestion cost = Average daily vehicle delay * Average Daily Traffic * Vehicle Occupancy * Value of time per person * weekdays in a year

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

No.	Corridor	Historical Composite Travel Time (MM:SS)									2009	Trend
		Peak Period	2000	2001	2002	2003	2004	2005/6	2007	2008		
1	I-25 (Lincoln Ave. to Broadway)	AM Peak	26:52	21:23	20:56	16:43	20:16	21:04	18:12	16:36	17:51	-0:06:52
		Noon	14:32	14:24	17:14	13:57	13:34	13:48	13:33	12:15	13:27	-0:02:26
		PM peak	29:08	31:16	24:39	19:26	26:03	23:30	20:15	21:00	20:09	-0:09:32
2	I-25 (Broadway to US 36)	AM Peak			11:11	12:31	14:10	10:39	12:15	16:24	13:51	+0:02:58
		Noon			09:52	11:44	09:18	10:12	09:54	11:12	10:57	+0:00:36
		PM peak			11:13	16:35	16:12	15:01	20:30	17:15	22:51	+0:08:41
3	I-25 (Lincoln Ave. to Meadows Pkwy.)	AM Peak							08:21	07:51	07:45	-0:00:36
		Noon							07:30	07:24	07:06	-0:00:24
		PM peak							07:57	07:57	07:15	-0:00:42
4	I-25 (S. Academy Blvd. to N. Gate Rd.)	AM Peak							21:03	19:39	17:57	-0:03:06
		Noon							20:09	20:06	17:21	-0:02:48
		PM peak							21:45	22:06	19:18	-0:02:27
5	I-25 (US 36 to SH 14)	AM Peak							44:24	46:18	47:57	+0:03:33
		Noon							44:27	44:54	45:54	+0:15:57
		PM peak							46:06	47:48	47:27	+0:01:21
6	I-70 (C-470 to I-25)	AM Peak			12:28	13:48	13:13	13:54	12:15	13:42	13:54	+0:00:40
		Noon			12:40	13:13	12:20	12:44	12:15	13:00	13:39	+0:00:31
		PM peak			12:42:00	12:28:00	13:47	13:11	14:48	14:45	14:12	+0:02:10
7	I-70 East (I-25 to Pena Blvd.)	AM Peak		12:33	12:07	09:46	10:10	10:44	10:39	10:42	10:54	-0:01:17
		Noon		10:16	10:48	09:44	09:18	10:07	09:30	09:45	10:36	-0:00:14
		PM peak		13:33	14:24	13:49	14:30	17:59	18:39	12:24	15:21	+0:01:43

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

No.	Corridor	Historical Composite Travel Time (MM:SS)									2009	Trend
		Peak Period	2000	2001	2002	2003	2004	2005/6	2007	2008		
15	US 6-North Ave. (1st St. to I-70 Business)	AM Peak							07:24	07:24	08:48	+0:01:24
		Noon							08:42	08:36	09:39	+0:00:57
		PM peak							10:03	09:21	09:24	-0:00:39
16	US 6-Vasquez Blvd. (56th Ave. to 77th Ave.)											
		AM Peak							06:18	05:12	05:18	-0:01:00
		Noon							05:21	04:51	05:42	+0:00:21
		PM peak							07:00	06:51	06:54	-0:00:06
17	US 6/SH 119 (SH 93 to Gregory St.)											
		SAT Peak							28:21	28:33	27:54	-0:00:27
		Off-Peak							28:21	29:03	29:18	+0:00:57
		SUN peak							28:45	28:54	29:18	+0:00:33
18	US 24 (SH 67 to I-25)											
		AM Peak							32:30	30:18	32:27	-0:00:03
		Noon							32:00	30:54	32:36	+0:00:36
		PM peak							32:39	32:15	33:12	+0:00:33
19	US 34 (US 287 to US 85)											
		AM Peak				27:25	24:03	25:36	26:27	28:39	25:51	+0:00:38
		Noon				27:46	26:13	26:30	27:45	27:15	26:42	-0:00:08
		PM peak				30:04	27:30	27:29	29:33	29:42	28:33	+0:00:09
20	US 34 (CR 63 to CR 43)											
		SAT Peak							17:15	16:36	17:33	+0:00:18
		Off-Peak							17:21	16:48	17:27	+0:00:06
		SUN peak							17:03	16:45	17:48	+0:00:45
21	US 36 (Canyon Blvd. to SH 157)											
		AM Peak							04:00	04:03	03:51	-0:00:09
		Noon							08:12	03:51	04:03	-0:00:03
		PM peak							04:21	04:06	04:15	-0:00:06

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

No.	Corridor	Historical Composite Travel Time (MM:SS)										
		Peak Period	2000	2001	2002	2003	2004	2005/6	2007	2008	2009	Trend
36	US 285-Hampden Ave. (SH 121 to US 85)	AM Peak							05:51	05:45	07:03	+0:01:12
		Noon							05:09	05:06	06:06	+0:00:57
		PM peak							06:00	06:18	06:42	+0:00:42
37	US 287-S. College Ave. (Drake Rd. to Mulberry St.)	AM Peak							04:03	04:09	03:51	-0:00:12
		Noon							04:39	05:09	05:03	+0:00:24
		PM peak							05:21	05:54	05:06	-0:00:15
38	US 287 (US 36 to Nickel St.)	AM Peak							17:06	15:15	15:33	-0:01:33
		Noon							16:27	15:00	16:45	+0:00:18
		PM peak							19:18	17:03	18:51	-0:00:27
39	US 287 (Midway Blvd. to US 34)	AM Peak							46:27	48:45	47:48	+0:01:21
		Noon							46:54	49:27	50:21	+0:03:27
		PM peak							50:48	53:27	54:18	+0:03:30
40	US 287-Federal Blvd. (US 40 to US 36)	AM Peak				13:35	13:33	13:45	14:30	13:42	16:33	+0:02:17
		Noon				13:45	12:11	13:07	14:27	13:45	14:36	+0:01:28
		PM peak				15:28	14:28	15:32	17:36	15:30	17:30	+0:02:11
41	US 550 (US 160 North to 25th St.)	AM Peak							04:33	04:15	03:48	-0:00:45
		Noon							04:12	04:18	04:18	+0:00:06
		PM peak							05:03	04:51	05:03	-0:00:00
42	US 550 (CR 220 to US 160 South)	AM Peak							01:33	01:39	01:21	-0:00:12
		Noon							01:15	01:33	01:21	+0:00:06
		PM peak							01:18	01:30	01:18	-0:00:00

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

C-7
NAVJ@Y
Consulting Services, Inc.

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

No.	Corridor	Historical Composite Travel Time (MM:SS)									2009	Trend
		Peak Period	2000	2001	2002	2003	2004	2005/6	2007	2008		
50	SH 9 (I-70 to CR 1900)	SAT Peak							04:54	04:03	04:06	-0:00:48
		Off-Peak							04:36	03:57	03:12	-0:01:24
		SUN peak							05:15	03:48	04:45	-0:00:30
51	SH 9 (I-70 to Boreas Pass Rd.)	SAT Peak							19:33	19:12	20:15	+0:00:42
		Off-Peak							18:00	19:00	19:15	+0:01:15
		SUN peak							18:33	18:45	19:51	+0:01:18
52	SH 30 (I-25 to I-225)	AM Peak						19:58	21:12	22:39	19:39	+0:00:09
		Noon						20:12	20:00	21:51	21:30	+0:01:44
		PM peak						20:41	24:06	26:06	23:39	+0:03:16
53	SH 30 (I-225 to Hampden Ave.)	AM Peak							14:09	14:36	14:18	+0:00:09
		Noon							14:24	14:15	13:57	-0:00:27
		PM peak							15:09	17:36	15:24	+0:00:15
54	SH 45-Pueblo Blvd. (Lehigh St. to SH 96)	AM Peak							02:15	02:15	02:06	-0:00:09
		Noon							02:12	02:03	01:57	-0:00:15
		PM peak							02:30	02:24	02:12	-0:00:18
55	SH 82 (I-70 to Old SH 82)	SAT Peak							29:45	28:39	28:03	-0:01:42
		Off-Peak							29:09	28:24	28:51	-0:00:18
		SUN peak							29:15	27:48	28:09	-0:01:06
56	SH 82 (Old SH 82 to West Hallam Ave.)	SAT Peak							20:12	19:21	20:42	+0:00:30
		Off-Peak							19:42	18:45	20:57	+0:01:15
		SUN peak							20:03	18:18	20:21	+0:00:18

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

CDOT Statewide Travel-Time Data Collection and Analysis Project

Data Collection Year 2009
Appendix C - Historical Composite Travel Times
Table 5: Historical Composite Travel Times

No.	Corridor	Historical Composite Travel Time (MM:SS)									2009	Trend
		Peak Period	2000	2001	2002	2003	2004	2005/6	2007	2008		
71	SH 340 (20 3/4 Rd. to I-70 Business)	AM Peak							09:21	09:00	09:27	+0:00:06
		Noon							09:00	08:33	09:30	+0:00:30
		PM peak							09:18	08:51	08:45	-0:00:33

Table 6: Interstate Travel Rate Index for AM commuter and Saturday Recreational Peaks

AM Peak or Saturday Peak Travel Rate Index						
				l Rat	dex (
Interstate	Limits	TRI	PD*	TRI	SD**	Combined Average
I-225	I-70 to I-25	1.47	SB	1.19	NB	1.33
I-25	Lincoln Ave. to Broadway	1.43	NB	1.09	SB	1.26
I-270	I-70 to I-76	1.34	EB	1.08	WB	1.21
I-76	I-25 to I-70	1.25	WB	1.05	EB	1.15
I-25	Meadows Pkwy. to Lincoln Ave.	1.22	NB	1.03	SB	1.13
I-25	US 36 to SH 14	1.10	NB	1.09	SB	1.10
I-25	Broadway to US 36	1.29	SB	0.89	NB	1.09
I-70***	SH 9 to C-470	1.09	WB	1.03	EB	1.06
I-70***	Rifle to No Name Interchange	1.09	EB	1.01	WB	1.05
I-25	S. Academy Blvd. to N. Gate Rd.	1.06	SB	1.03	NB	1.05
I-70	C-470 to I-25	1.04	EB	1.03	WB	1.04
I-70***	Edwards to Vail East Exit	1.02	EB	1.02	WB	1.02
I-70	I-25 to Peña Blvd.	1.07	EB	0.92	WB	1.00
PD* - Peak direction(direction of higher TRI value)						
SD** - Secondary direction(direction of lower TRI value)						
*** - Denotes Saturday TRI value for recreational corridor						

Table 7: Interstate Travel Rate Index for PM commuter and Sunday Recreational Peaks

PM Peak or Sunday Peak Travel Rate Index						
	Limits	Travel Rate Index (TRI)				
Interstate		TRI	PD*	TRI	SD**	Combined Average
I-25	Broadway to US 36	1.83	SB	1.73	NB	1.78
I-270	I-70 to I-76	1.86	WB	1.09	EB	1.48
I-70 ***	SH 9 to C-470	1.87	EB	1.06	WB	1.47
I-25	Lincoln Ave. to Broadway	1.46	NB	1.40	SB	1.43
I-70	I-25 to Peña Blvd.	1.54	WB	1.23	EB	1.39
I-225	I-70 to I-25	1.46	NB	1.28	SB	1.37
I-25	S. Academy Blvd. to N. Gate Rd.	1.18	NB	1.06	SB	1.12
I-25	US 36 to SH 14	1.08	NB	1.08	SB	1.08
I-70	C-470 to I-25	1.08	WB	1.03	EB	1.06
I-25	Meadows Pkwy. to Lincoln Ave.	1.07	SB	1.03	NB	1.05
I-76	I-25 to I-70	1.06	EB	1.04	WB	1.05
I-70***	Rifle to No Name Interchange	1.06	EB	1.04	WB	1.05
I-70***	Edwards to Vail East Exit	1.01	EB	1.01	WB	1.01
PD* - Peak direction(direction of higher TRI value)						
SD** - Secondary direction(direction of lower TRI value)						
*** - Denotes Sunday TRI value for recreational corridor						

D-1

Table 8: US Highway Travel Rate Index for AM commuter and Saturday Recreational Peaks

AM Peak or Saturday Peak Travel Rate Index						
US Highway	Limits	Travel Rate Index (TRI)				
		TRI	PD*	TRI	SD**	Combined Average
US 36	SH 157 to I-25	1.35	WB	1.28	EB	1.32
US 285-Hampden Ave.	US 85 to I-25	1.38	EB	1.22	WB	1.30
US 285-Hampden Ave.	SH121 to US 85	1.47	EB	1.07	WB	1.27
US 6	I-70 to I-25	1.45	EB	1.03	WB	1.24
US 6- Vasquez Blvd.	56th Ave. to 77th Ave.	1.35	SB	1.04	NB	1.20
US 287-Federal Blvd.	US 40 to US 36	1.27	SB	1.11	NB	1.19
US 160	US 550 to US 160 Business	1.31	WB	1.03	EB	1.17
US 50	Ute Ave. to 27.00 Rd	1.26	WB	1.07	EB	1.17
US 160	CR 207 to US 550 South	1.24	EB	1.06	WB	1.15
US 36	Canyon Blvd. to SH 157	1.23	WB	1.02	EB	1.13
US 85-Santa Fe Dr.	Highlands Ranch Pkwy. to SH 40	1.18	NB	1.07	SB	1.13
US 550	CR 220 to US 160 S	1.12	NB	1.11	SB	1.12
US 40***	CR 129 to Pine Grove Rd.	1.12	WB	1.11	EB	1.12
US 550	US 160 N to 25th St.	1.17	SB	1.04	NB	1.11
US 50	SH 141 to 27.00 Rd	1.13	WB	1.06	EB	1.10
US 160	CR 2301 to CR 25	1.12	EB	1.06	WB	1.09
US 287	US 36 to Nickel St.	1.11	SB	1.07	NB	1.09
US 6-North Ave.	1st St. to I-70 Business	1.13	EB	1.03	WB	1.08
US 50	Purcell Blvd. to Fortino Blvd.	1.09	EB	1.06	WB	1.08
US 85	Meadows Pkwy. to Highlands Ranch Pkwy.	1.09	SB	1.05	NB	1.07
US 550	CR 203A to CR 250	1.06	NB	1.04	SB	1.05
US 34***	CR 63 to CR 43	1.06	WB	1.04	EB	1.05
US 85	I-76 to US 34	1.05	NB	1.05	SB	1.05
US 36	SH 66 to Canyon Blvd.	1.05	NB	1.05	SB	1.05
US 6***	SH 93 to Gregory St.	1.05	EB	1.04	WB	1.05
US 287-S. College Ave.	Drake Rd. to Mulberry St.	1.07	SB	1.01	NB	1.04
US 40***	CR 8/5 to I-70	1.05	NB	1.02	SB	1.04
US 24	SH 67 to I-25	1.04	EB	1.04	WB	1.04
US 34	US 287 to US 85	1.02	EB	1.00	WB	1.01
US 287	Midway Blvd. to US 34	0.99	NB	0.99	SB	0.99
PD* - Peak direction(direction of higher TRI value)						
SD** - Secondary direction(direction of lower TRI value)						
*** - Denotes Saturday TRI value for recreational corridor						

D-2

Table 9: US Highway Travel Rate Index for PM commuter and Sunday Recreational Peaks

PM Peak or Sunday Peak Travel Rate Index						
US Highway	Limits	Travel Rate Index (TRI)				
		TRI	PD*	TRI	SD**	Combined Average
US 6-Vasquez Blvd.	56th Ave. to 77th Ave.	1.71	NB	1.36	SB	1.54
US 550	US 160 North to 25th St.	1.57	SB	1.38	NB	1.48
US 287-S. College Ave.	Drake Rd. to Mulberry St.	1.67	SB	1.12	NB	1.40
US 287	US 36 to Nickel St.	1.39	NB	1.24	SB	1.32
US 85-Santa Fe Dr.	Highlands Ranch Pkwy. to SH 40	1.38	SB	1.23	NB	1.31
US 285-Hampden Ave.	US 85 to I-25	1.35	WB	1.20	EB	1.28
US 287-Federal Blvd.	US 40 to US 36	1.29	NB	1.23	SB	1.26
US 36	Canyon Blvd. to SH 157	1.27	EB	1.24	WB	1.26
US 160	CR 2301 to CR 25.00	1.33	WB	1.17	EB	1.25
US 50	Purcell Blvd. to Fortino Blvd.	1.29	EB	1.18	WB	1.24
US 285-Hampden Ave.	SH 121 to US 85	1.37	WB	1.05	EB	1.21
US 6-North Ave.	1st St. to I-70 Business	1.16	EB	1.14	WB	1.15
US 50	Ute Ave. to 27.00 Rd.	1.19	WB	1.09	EB	1.14
US 160	CR 207 to US 550 South	1.17	WB	1.10	EB	1.14
US 287	Midway Blvd. to US 34	1.13	NB	1.13	SB	1.13
US 34	US 287 to US 85	1.14	WB	1.09	EB	1.12
US 36	SH 66 to Canyon Blvd.	1.13	NB	1.10	SB	1.12
US 6/SH 119***	SH 93 to Gregory St.	1.14	EB	1.06	WB	1.10
US 85	Meadows Pkwy. to Highlands Ranch Pkwy.	1.14	SB	1.05	NB	1.10
US 6	I-70 to I-25	1.15	WB	1.03	EB	1.09
US 85	I-76 to US 34	1.11	SB	1.07	NB	1.09
US 40***	CR 129 to Pine Grove Rd.	1.10	EB	1.08	WB	1.09
US 50	SH 141 to 27.00 Rd.	1.10	WB	1.07	EB	1.09
US 550	CR 220 to US 160 South	1.09	NB	1.05	SB	1.07
US 24	SH 67 to I-25	1.08	EB	1.05	WB	1.07
US 550	CR 203A to CR 250	1.07	SB	1.06	NB	1.07
US 36	SH 157 to I-25	1.11	EB	1.00	WB	1.06
US 40***	CR 8/5 to I-70	1.08	SB	1.03	NB	1.06
US 34***	CR 63 to CR 43	1.07	EB	1.04	WB	1.06
US 160	US 550 to US 160 Business	1.06	EB	1.01	WB	1.04
PD* - Peak direction(direction of higher TRI value)						
SD** - Secondary direction(direction of lower TRI value)						
*** - Denotes Sunday TRI value for recreational corridor						

Table 10: State Highway Travel Rate Index for AM commuter and Saturday Recreational Peaks

AM Peak or Saturday Peak Travel Rate Index						
State Highway	Limits	Travel Rate Index (TRI)				
		TRI	PD*	TRI	SD**	Combined Average
SH 9***	I-70 to CR 1900	1.24	SB	1.20	NB	1.22
SH 45-Pueblo Blvd.	Lehigh St. to SH 96	1.28	NB	1.09	SB	1.19
SH 119-Diagonal Hwy.	US 287 to I-25	1.25	WB	1.11	EB	1.18
SH 9***	I-70 to Boreas Pass Rd.	1.22	SB	1.12	NB	1.17
SH 7-Baseline Rd.	US 287 S to I-25	1.19	WB	1.11	EB	1.15
SH 340	20 3/4 Rd. to I-70 Business	1.15	EB	1.10	WB	1.13
SH 7-Arapahoe Rd.	Cherryvale Rd. to US 287	1.21	WB	1.02	EB	1.12
SH 177-S. University Blvd.	C-470/Lincoln Ave. to I-25	1.20	NB	1.04	SB	1.12
SH 2	72th Ave. to 96th Ave.	1.13	NB	1.10	SB	1.12
SH 88-Arapahoe Rd.	I-25 to SH 83	1.30	EB	0.92	WB	1.11
SH 83-Parker Rd.	Lincoln Ave. to I-225	1.13	NB	1.09	SB	1.11
SH 88-Belleview	SH 88/Federal to I-25	1.13	EB	1.08	WB	1.11
SH 119-Diagonal Hwy.	US 36 to US 287	1.13	WB	1.08	EB	1.11
SH 121-Wadsworth Blvd.	US 40/Colfax to US 36	1.09	SB	1.08	NB	1.09
SH 83-Parker Rd.	I-225 to SH 2	1.12	NB	1.03	SB	1.08
SH 30	I-225 to Hampden Ave.	1.09	WB	1.06	EB	1.08
SH 119	Sugarloaf Rd. to Broadway St.	1.08	WB	1.08	EB	1.08
SH 82***	I-70 to Old SH 82	1.08	NB	1.07	SB	1.08
C-470	SH 121 to I-25	1.17	EB	0.96	WB	1.07
SH 2-Colorado Blvd.	US 285 to I-70	1.16	SB	0.98	NB	1.07
SH 93	SH 58/US 6 to US 36	1.07	SB	1.06	NB	1.07
C-470	SH 121 to I-70	1.08	WB	1.03	EB	1.06
SH 82***	Old SH 82 to West Hallam Ave.	1.07	NB	1.05	SB	1.06
SH 95-Sheridan Blvd.	US 285 to I-70	1.05	SB	1.02	NB	1.04
SH 30	I-25 to I-225	1.05	EB	1.02	WB	1.04
SH 121-Wadsworth Blvd.	C-470 to US 40/Colfax	1.04	NB	0.99	SB	1.02
SH 88-Federal Blvd.	US 6 to US 285	1.02	NB	1.02	SB	1.02
SH 95	I-70 to US 36	1.01	NB	0.99	SB	1.00
PD* - Peak direction(direction of higher TRI value)						
SD** - Secondary direction(direction of lower TRI value)						
*** - Denotes Saturday TRI value for recreational corridor						

D-4
$\frac{\text { ANATM(ANTM, }}{\text { Consulting Services, Inc }}$
Consulting Services, Inc.

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix D - Travel Rate Index Comparisons

Table 11: State Highway Travel Rate Index for PM commuter and Sunday Recreational Peaks

PM Peak or Sunday Peak Travel Rate Index						
State Highway	Limits	Travel Rate Index (TRI)				
		TRI	PD*	TRI	SD**	Combined Average
SH 88-Arapahoe Rd.	I-25 to SH 83	1.72	EB	1.18	WB	1.45
SH 9***	I-70 to CR 1900	1.62	SB	1.21	NB	1.42
C-470	SH 121 to I-25	1.61	WB	1.12	EB	1.37
SH 83-Parker Rd.	I-225 to SH 2	1.43	SB	1.18	NB	1.31
SH 2-Colorado Blvd.	US 285 to I-70	1.32	SB	1.30	NB	1.31
SH 7-Arapahoe Rd.	Cherryvale Rd. to US 287 N	1.51	EB	1.05	WB	1.28
SH 83-Parker Rd.	Lincoln Ave. to I-225	1.33	NB	1.21	SB	1.27
SH 95-Sheridan Blvd.	US 285 to I-70	1.30	SB	1.21	NB	1.26
SH 30	I-25 to I-225	1.28	EB	1.21	WB	1.25
SH 45-Pueblo Blvd.	Lehigh St. to SH 96	1.38	NB	1.10	SB	1.24
SH 121-Wadsworth Blvd.	US 40 to US 36	1.27	SB	1.19	NB	1.23
SH 88	US 6 to US 285	1.27	SB	1.18	NB	1.23
SH 95-Sheridan Blvd.	I-70 to US 36	1.26	SB	1.15	NB	1.21
SH 121-Wadsworth Blvd.	C-470 to US 40	1.25	SB	1.17	NB	1.21
SH 2	72nd Ave. to 96th Ave.	1.21	SB	1.19	NB	1.20
SH 88-Belleview	SH 88-Federal to I-25	1.28	WB	1.10	EB	1.19
SH 119-Diagonal Hwy.	US 36 to US 287	1.20	EB	1.17	WB	1.19
SH 30	I-225 to Hampden Ave.	1.20	EB	1.12	WB	1.16
SH 177-S. University Blvd.	C-470/Lincoln Ave to I-25	1.25	SB	1.05	NB	1.15
SH 9***	I-70 to Boreas Pass Rd.	1.18	SB	1.12	NB	1.15
SH 119-Diagonal Hwy.	US 287 to I-25	1.16	EB	1.10	WB	1.13
SH 7-Baseline Rd.	US 287 to I-25	1.13	EB	1.12	WB	1.13
C-470	SH 121 to I-70	1.21	EB	1.03	WB	1.12
SH 119	Sugarloaf Rd. to Broadway St.	1.17	EB	1.07	WB	1.12
SH 93	SH 58/US 6 to US 36	1.09	NB	1.09	SB	1.09
SH 82 ***	I-70 to Old SH 82	1.09	SB	1.08	NB	1.09
SH 82***	Old SH 82 to West Hallam Ave.	1.05	NB	1.04	SB	1.05
SH 340	20 3/4 Rd to I-70 Business	1.07	EB	1.01	WB	1.04
PD* - Peak direction(direction of higher TRI value)						
SD** Secondary direction(direction of lower TRI value)						
*** - Denotes Sunday TRI value for recreational corridor						

D-5

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix E - Travel Time Variability Comparisons

Table 12: Interstate Travel Time Variability for AM commuter and Saturday Recreational Peaks

AM Peak or Saturday Peak Travel Time Variability						
Interstate	Limits	Travel Time Variability (TTV)				
		TTV	PD*	TTV	SD**	Combined Average
I-270	I-70 to I-76	84	WB	80	EB	82
I-225	I-70 to I-25	74	SB	63	NB	69
I-25	Lincoln Ave. to Broadway	94	NB	25	SB	60
I-76	I-25 to I-70	80	WB	10	EB	45
I-25	Lincoln Ave. to Meadows Pkwy.	71	NB	7	SB	39
I-25	Broadway to US 36	38	SB	33	NB	36
I-70***	SH 9 to C-470	41	WB	17	EB	29
I-25	US 36 to SH 14	34	NB	19	SB	27
I-25	S. Academy Blvd. to N. Gate Rd.	19	SB	18	NB	19
I-70***	Rifle to No Name Interchange	12	WB	9	EB	11
I-70	I-25 to Peña Blvd.	12	EB	8	WB	10
I-70	C-470 to I-25	12	EB	8	WB	10
I-70***	Edwards to Vail East Exit	6	WB	5	EB	6
PD* - Peak direction(direction of higher TTV value)						
SD** - Secondary direction(direction of lower TTV value)						
*** - Denotes Saturday TRI value for recreational corridor						

Table 13: Interstate Travel Time Variability for PM commuter and Sunday Recreational Peaks

PM Peak or Sunday Peak Travel Time Variability						
	Limits	Travel Time Variability (TTV)				
Interstate		TTV	PD*	TTV	SD**	Combined Average
I-25	Broadway to US 36	215	SB	70	NB	143
I-25	Lincoln Ave. to Broadway	101	NB	86	SB	94
I-70***	SH 9 to C-470	133	EB	15	WB	74
I-225	I-70 to I-25	68	NB	40	SB	54
I-270	I-70 to I-76	54	WB	26	EB	40
I-25	S. Academy Blvd. to N. Gate Rd.	34	NB	7	SB	21
I-25	US 36 to SH 14	19	SB	14	NB	17
I-70	I-25 to Peña Blvd.	18	WB	10	EB	14
I-70	C-470 to I-25	18	WB	10	EB	14
I-76	I-25 to I-70	12	EB	7	WB	10
I-25	Lincoln Ave. to Meadows Pkwy.	9	SB	6	NB	8
I-70***	Rifle to No Name Interchange	5	EB	4	WB	5
I-70***	Edwards to Vail East Exit	5	WB	2	EB	4
PD* - Peak direction(direction of higher TTV value)						
SD** - Secondary direction(direction of lower TTV value)						
*** - Denotes Sunday TRI value for recreational corridor						

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix E - Travel Time Variability Comparisons
Table 14: US Highway Travel Time Variability for AM commuter and Saturday Recreational Peaks

AM Peak or Saturday Peak Travel Time Variability						
US Highway	Limits	Travel Time Variability (TTV)				
		TTV	PD*	TTV	SD**	Combined Average
US 285-Hampden Ave.	US 85 to I-25	127	WB	77	EB	102
US 36	SH 157 to I-25	119	EB	68	WB	94
US 285-Hampden Ave.	SH 121 to US 85	104	EB	25	WB	65
US 6-Vasquez Blvd.	56th Ave. to 77th Ave.	63	NB	58	SB	61
US 6	I-70 to I-25	105	EB	9	WB	57
US 287-Federal Blvd.	US 40 to US 36	78	SB	35	NB	57
US 160	US 550 to US 160 Business	101	WB	10	EB	56
US 550	US 160 North to 25th St.	51	NB	41	SB	46
US 36	Canyon Blvd. to SH 157	77	WB	14	EB	46
US 287-S. College Ave.	Drake Rd. to Mulberry St.	46	NB	44	SB	45
US 160	CR 207 to US 550	58	EB	30	WB	44
US 6-North Ave.	1st St. to I-70 Business	45	WB	38	EB	42
US 50	Purcell Blvd. to Fortino Blvd.	56	EB	17	WB	37
US 85-Santa Fe Dr	Highlands Ranch Pkwy. to SH 40	40	NB	31	SB	36
US 50	Ute Ave to 27.00 Rd	46	WB	21	EB	34
US 287	US 36 to Nickel St.	35	NB	31	SB	33
US 160	CR 2301 to CR 25	35	EB	27	WB	31
US 550	CR 220 to US 160 South	27	SB	24	NB	26
US 36	SH 66 to Canyon Blvd.	26	SB	17	NB	22
US 40***	CR 129 to Pine Grove Rd.	25	WB	10	EB	18
US 50	SH 141 to 27.00 Rd	20	WB	14	EB	17
US 550	CR 203A to CR 250	16	NB	15	SB	16
US 6/SH 119***	SH 93 to Gregory St.	17	EB	13	WB	15
US 85	I-76 to US 34	16	NB	13	SB	15
US 34	US 287 to US 85	16	EB	12	WB	14
US 85	Meadows Pkwy. to Highlands Ranch Pkwy.	14	SB	9	NB	12
US 287	Midway Blvd. to US 34	13	NB	7	SB	10
US 24	SH 67 to I-25	11	WB	9	EB	10
US 40***	CR 8/5 to I-70	8	SB	7	NB	8
US 34***	CR 63 to CR 43	9	WB	5	EB	7
PD* - Peak direction(direction of higher TTV value)						
SD** - Secondary direction(direction of lower TTV value)						
*** - Denotes Saturday TTV value for recreational corridor						

CDOT Statewide Travel-Time Data Collection and Analysis Project
Data Collection Year 2009
Appendix E - Travel Time Variability Comparisons

Table 15: US Highway Travel Time Variability for PM commuter and Sunday Recreational Peaks

PM Peak or Sunday Peak Travel Time Variability						
US Highway	Limits	Travel Time Variability (TTV)				
		TTV	PD*	TTV	SD**	Combined Average
US 550	US 160 North to 25th St.	217	SB	47	NB	132
US 287-S. College Ave.	Drake Rd. to Mulberry St.	103	SB	48	NB	76
US 285-Hampden Ave.	US 85 to I-25	71	EB	56	WB	64
US 6-Vasquez Blvd.	56th Ave to 77th Ave	71	NB	50	SB	61
US 285-Hampden Ave.	SH 121 to US 85	86	WB	32	EB	59
US 36	Canyon Blvd. to SH 157	64	WB	44	EB	54
US 287	US 36 to Nickel St.	51	NB	44	SB	48
US 85-Santa Fe Dr.	Highlands Ranch Pkwy. to SH 40	41	SB	31	NB	36
US 50	Ute Ave. to 27.00 Rd.	37	WB	26	EB	32
US 160	CR 2301 to CR 25	38	WB	24	EB	31
US 550	CR 220 to US 160 S	36	NB	25	SB	31
US 287-Federal Blvd.	US 40 to US 36	33	NB	24	SB	29
US 40***	CR 129 to Pine Grove Rd.	37	WB	20	EB	29
US 6-North Ave.	1st St to I-70 Business	33	EB	24	WB	29
US 6	I-70 to I-25	46	WB	10	EB	28
US 550	CR 203A to CR 250	23	SB	21	NB	22
US 50	Purcell Blvd. to Fortino Blvd.	27	WB	16	EB	22
US 160	CR 207 to US 550 South	21	EB	18	WB	20
US 50	SH 141 to 27.00 Rd.	21	WB	17	EB	19
US 6/SH 119***	SH 93 to Gregory St	21	EB	15	WB	18
US 34	US 287 to US 85	17	WB	16	EB	17
US 36	SH 66 to Canyon Blvd.	19	NB	12	SB	16
US 287	Midway Blvd to US 34	17	NB	13	SB	15
US 85	I-76 to US 34	17	SB	11	NB	14
US 34***	CR 63 to CR 43	14	WB	13	EB	14
US 85	Meadows Pkwy. to Highlands Ranch Pkwy.	19	SB	6	NB	13
US 24	SH 67 to I-25	13	EB	10	WB	12
US 36	SH 157 to I-25	20	EB	2	WB	11
US 40***	CR 8/5 to I-70	11	SB	8	NB	10
US 160	US 550 to US 160 Business	8	WB	7	EB	8
PD* - Peak direction(direction of higher TTV value)						
SD** - Secondary direction(direction of lower TTV value)						
*** - Denotes Sunday TTV value for recreational corridor						

Table 16: State Highway Travel Time Variability for AM commuter and Saturday Recreational Peaks

AM Peak or Saturday Peak Travel Time Variability						
State Highway	Limits	Travel Time Variability (TTV)				
		TTV	PD*	TTV	SD**	Combined Average
SH 88-Arapahoe Rd.	I-25 to SH 83	83	WB	49	EB	66
SH 45-Pueblo Blvd.	Lehigh St. to SH 96	89	NB	33	SB	61
SH 119-Diagonal Hwy.	US 287 to I-25	78	WB	40	EB	59
SH 2	72th Ave. to 96th Ave.	72	NB	27	SB	50
SH 9***	I-70 to CR 1900	57	NB	39	SB	48
SH 30	I-25 to I-225	47	WB	44	EB	46
SH 7-Arapahoe Rd.	Cherryvale Rd. to US 287	52	WB	35	EB	44
SH 121-Wadsworth Blvd.	C-470 to US 40/Colfax	64	NB	21	SB	43
SH 88-Belleview	SH 88/Federal to I-25	39	EB	24	WB	32
SH 83-Parker Rd.	$\mathrm{I}-225$ to SH 2	36	NB	26	SB	31
SH 121-Wadsworth Blvd.	US 40/Colfax to US 36	34	SB	27	NB	31
SH 2-Colorado Blvd.	US 285 to I-70	43	SB	13	NB	28
SH 7-Baseline Rd.	US 287 S to I-25	29	WB	26	EB	28
SH 119-Diagonal Hwy.	US 36 to US 287	31	SB	24	NB	28
SH 9***	I-70 to Boreas Pass Rd.	33	SB	20	NB	27
SH 95-Sheridan Blvd.	I-70 to US 36	29	SB	23	NB	26
SH 340	20 3/4 Rd. to I-70 Business	26	EB	24	WB	25
SH 88-Federal Blvd.	US 6 to US 285	28	NB	21	21	25
SH 83-Parker Rd.	Lincoln Ave. to I-225	27	NB	18	SB	23
SH 177-S. University Blvd.	C-470/Lincoln Ave. to I-25	32	NB	13	SB	23
SH 30	$\mathrm{I}-225$ to Hampden Ave.	21	EB	20	WB	21
C-470	SH 121 to I-25	34	EB	5	WB	20
SH 119	Sugarloaf Rd. to Broadway St.	24	EB	12	WB	18
SH 82 ***	I-70 to Old SH 82	18	SB	16	NB	17
SH 95-Sheridan Blvd.	US 285 to I-70	18	NB	16	SB	17
C-470	SH 121 to I-70	27	WB	5	EB	16
SH 82***	Old SH 82 to West Hallam Ave.	11	SB	9	NB	10
SH 93	SH 58/US 6 to US 36	14	NB	12	SB	9
PD* - Peak direction(direction of higher TTV value)						
SD** - Secondary direction(direction of lower TTV value)						
*** - Denotes Saturday TTV value for recreational corridor						

Table 17: State Highway Travel Time Variability for PM commuter and Sunday Recreational Peaks

PM Peak or Sunday Peak Travel Time Variability						
State Highway	Limits	Travel Time Variability (TTV)				
		TTV	PD*	TTV	SD**	Combined Average
SH 9***	I-70 to CR 1900	139	SB	29	NB	84
C-470	SH 121 to I-25	80	WB	31	EB	56
SH 45-Pueblo Blvd.	Lehigh St. to SH 96	88	NB	18	SB	53
SH 2	72th Ave. to 96th Ave.	54	NB	30	SB	42
SH 88-Arapahoe Rd.	$\mathrm{I}-25$ to SH 83	58	EB	23	WB	41
SH 7-Arapahoe Rd.	Cherryvale Rd. to US 287	47	EB	29	WB	38
SH 9***	I-70 to Boreas Pass Rd.	49	SB	27	NB	38
SH 88-Federal Blvd.	US 6 to US 285	38	SB	36	NB	37
SH 83-Parker Rd.	Lincoln Ave. to I-225	45	NB	24	SB	35
C-470	SH 121 to I-70	61	EB	7	WB	34
SH 2-Colorado Blvd.	US 285 to I-70	33	NB	33	SB	33
SH 83-Parker Rd.	$\mathrm{I}-225$ to SH 2	34	SB	24	NB	29
SH 95-Sheridan Blvd.	US 285 to I-70	36	SB	21	NB	29
SH 7-Baseline Rd.	US 287 S to I-25	39	WB	15	EB	27
SH 121-Wadsworth Blvd.	C-470 to US 40/Colfax	37	SB	15	NB	26
SH 119	Sugarloaf Rd. to Broadway St.	31	EB	20	WB	26
SH 95	I-70 to US 36	27	SB	24	NB	26
SH 88-Belleview	SH 88/Federal to I-25	41	WB	9	EB	25
SH 30	I-25 to I-225	27	EB	19	WB	23
SH 177-S. University Blvd.	C-470/Lincoln Ave. to I-25	35	SB	10	NB	23
SH 340	20 3/4 Rd. to I-70 Business	22	WB	21	EB	22
SH 121-Wadsworth Blvd.	US 40/Colfax to US 36	27	SB	16	NB	22
SH 119-Diagonal Hwy.	US 36 to US 287	22	SB	17	NB	20
SH 30	I-225 to Hampden Ave.	20	EB	18	WB	19
SH 119-Diagonal Hwy.	US 287 to I-25	23	WB	13	EB	18
SH 82 ***	I-70 to Old SH 82	18	SB	16	SB	17
SH 93	SH 58/US 6 to US 36	16	NB	14	SB	15
SH 82***	Old SH 82 to West Hallam Ave.	12	SB	11	NB	12
PD* - Peak direction(direction of higher TTV value)						
SD** - Secondary direction(direction of lower TTV value)						
*** - Denotes Sunday TTV value for recreational corridor						

As part of the project, travel times were collected for the HOV/HOT lanes on I-25, US 36 and US 85 corridors during morning and afternoon peak periods. The general limits and time periods of operation for the HOV/HOT lanes are identified below:

- For the I- 25 corridor, the HOV/HOT lanes are open in the southbound direction between US 36 and $20^{\text {th }}$ Street during the AM peak period. During the PM peak period, the HOV/HOT lanes are open in the northbound direction generally between 20th Street and US 36.
- For the US 36 corridor, the HOV/HOT lanes are open in the eastbound direction between Sheridan Boulevard and I-25 during the AM peak period. During the PM peak period, the HOV/HOT lanes are open in the westbound direction between I-25 and Federal Boulevard. Note that travelers utilizing the US 36 HOV lanes must also utilize the I-25 HOV lanes for access or egress.
- For the US 85 (Santa Fe Drive Corridor), the HOV lanes are active in the northbound direction between Bowles Avenue and I-25 during the AM peak period. During the PM peak period, the HOV lanes are active in the southbound direction between Florida Avenue and Bowles Avenue.

Below is a summary of 2009 HOV/HOT findings and a comparison of HOV/HOT lanes versus general purpose lanes.

- On the I-25 corridor, the travel times in HOV/HOT lanes were 41 and 28 percent lower than general purpose lanes in the AM and PM peak periods, respectively.
- On the US 36 corridor, the travel times in HOV/HOT lanes were 26 percent lower than general purpose lanes in the AM peak period. Travel times were virtually identical in the PM peak period, however, it should be noted that this does not include the additional saving realized when driving the HOV lane along I- 25 which transitions to the HOV lane along US 36 in the westbound direction.
- On the US 85 corridor, the travel times in HOV lanes were 14 and 31 percent lower than general purpose lanes in the AM and PM peak periods, respectively.

Table 18: 2009 HOV/HOT Comparisons

Corridors	Time PeriodDirection	Travel Time (Minutes)			\% Time Saved
		HOV/HOT Lanes	General Purpose Lanes	Differences	
I-25	AM-Southbound	6.5	11.0	4.5	41
	PM-Northbound	7.3	10.2	2.9	28
US 36	AM-Eastbound	5.3	7.2	1.9	26
	PM-Westbound	2.8	2.7	-0.1	0
US 85	AM-Northbound	9.5	11.0	1.5	14
	PM-Southbound	9.2	13.1	4.0	31

Three Year comparison for HOV/HOT and General purpose lanes
Figure 1\&2: I-25 Corridor Average Travel Times Comparisons for HOV/HOT and General Purpose Lanes

Figure 3\&4: US 36 Corridor Average Travel Times Comparisons for HOV/HOT and General Purpose Lanes

-

Figure 5\&6: US-85 Corridor Average Travel Times Comparisons for HOV/HOT and General Purpose Lanes

Three Year Trend Highlights (Year 2007-2009)

- With the exception of US-85 corridor, the daily average travel time for I-25 and US-36 corridors reduced for both HOV/HOT lanes and general purpose lanes.

Table - 19 below details the trend analysis for the 3 year average travel times.
Table 19: 3 Year Trend Analysis

Corridor	Lanes	Travel Time (Minutes)			Trend Analysis \% Increased/Decreased
		$\begin{aligned} & \text { Year } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2009 \end{aligned}$	
I-25 AM Southbound	HOV/HOT Lanes	8.7	6.1	6.5	-8.33
	General Purpose Lanes	10.9	10.4	11.0	-1.69
I-25 PM - Northbound	HOV/HOT Lanes	9.0	6.3	7.3	-9.23
	General Purpose Lanes	14.4	11.1	10.2	-4.08
US 36 AM Eastbound	HOV/HOT Lanes	5.2	4.6	5.3	-4.26
	General Purpose Lanes	5.8	5.6	7.2	-4.35
US 36 PM Westbound	HOV/HOT Lanes	2.7	2.5	2.8	-3.07
	General Purpose Lanes	2.8	2.6	2.7	-1.89
US 85 AM Northbound	HOV/HOT Lanes	9.4	10.8	9.5	4.52
	General Purpose Lanes	15.6	12.7	11	-1.85
US 85 PM - Southbound	HOV/HOT Lanes	7.7	9.3	9.2	2.99
	General Purpose Lanes	13.9	12.6	13.1	-2.34

I-25 (Lincoln Ave to Broadway) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during the morning peak period and near equally distributed between northbound and southbound directions during the afternoon peak period. Congestion is highly variable and can occur anywhere along the corridor, however, daily congestion is at its worst in the afternoon peak period northbound between Colorado Boulevard and Broadway and southbound approaching Lincoln Avenue. Travel time variability for northbound and southbound directions in the peak periods varies between 5 and 101 percent. This data was collected in October and November 2009.

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.43
Corridor Length	14.0 Miles		AM SB-1.09
Facility Type	Interstate - Urban		PM NB-1.46
Speed Limit	55-65 mph		PM SB-1.40
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	2,193,400
Corridor Measures		Annual Person	2,566,300
Traffic Count per Day	$\begin{gathered} \text { Avg: } 153,200 \\ (127,100-166,500) \end{gathered}$	Hours of Delay	2,566,300
v/c Ratio	. $62-0.94$	Congestion Costs	\$41,061,200

Travel Time Variability by Time Period for October and November 2009

(SB)
-High • Average \bullet Low

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-25 (Lincoln Ave to Broadway) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+2.84 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -5.74% per year
- The Annual Cost of Congestion increased at the rate of $+2.41 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -6.75\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion can occur anywhere along the corridor, however, daily congestion occurs southbound in both morning and afternoon peak periods between $58^{\text {th }}$ Avenue and Speer Boulevard and northbound in the afternoon peak period between Broadway and $23^{\text {rd }}$ Avenue and approaching US-36. Travel time variability in the northbound and southbound directions in the peak periods varies between 4 and 216 percent. This data was collected in April and May 2009.

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-0.89
Corridor Length	11.3 Miles		AM SB-1.29
Facility Type	Interstate - Urban		PM NB-1.73
Speed Limit	55 mph		PM SB-1.83
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	5,232,400
Corridor Measures		Annual Person	6,121,900
Traffic Count per Day	Avg: 218,600 $(199,300-238,000)$	Hours of Delay	6,121,900
v/c Ratio	. $78-1.00$	Congestion Costs	\$97,950,000

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-25 (Broadway to US 36) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+6.55 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+16.91 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+39.64 \%$ per year
- \quad The Annual Vehicle Hours of Delay increased at the rate of $+27.16 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs between Surrey Ridge Road and Lincoln Avenue. Travel time variability for northbound and southbound directions in the peak periods varies between 4 and 71 percent. This data was collected in November and December 2009.

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.22
Corridor Length	8.7 Miles		AM SB-1.03
Facility Type	Interstate - Urban		PM NB-1.03
Speed Limit	65-75 mph		PM SB-1.07
CDOT Region(s)	Region 1 \& Region 6	Annual Vehicle Hours of Delay	158,400
Corridor Measures		Annual Person Hours of Delay	198,000
Traffic Count	$\begin{gathered} \text { Avg: } 97,300 \\ (90,900-103,600) \\ \hline \end{gathered}$		98,000
v/c Ratio	$\frac{(90,900-103,600)}{.64-.85}$	Annual Congestion Costs	\$3,168,200

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.25 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-25 (Lincoln Ave to Meadows Pkwy) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -7.69\% per year
- The SB Daily Average Travel Time decreased at the rate of -6.24% per year
- The Annual Cost of Congestion decreased at the rate of -62.90% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -70.30% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs between Cimarron and Bijou Streets. Travel time variability for northbound and southbound directions in the peak period varies between 7 and 33 percent. This data was collected in November 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.03
Corridor Length	20.3 Miles		AM SB-1.06
Facility Type	Interstate - Urban		PM NB-1.18
Speed Limit	$55-75 \mathrm{mph}$		PM SB-1.06
CDOT Region(s)	Region 2	Annual Vehicle Hours of Delay	297,300
Corridor Measures		Annual Person	377.500
Traffic Count	Avg: 87,400	Hours of Delay	7,500
per Day	$0.50-0.98$	Annual Congestion Costs	\$6,040,500

Travel Time Variability by Time Period for November 2009

(NB) (SB)
(NB)
(SB)

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction
(Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -2.73% per year
- The SB Daily Average Travel Time decreased at the rate of -8.62% per year
- The Annual Cost of Congestion decreased at the rate of -53.14% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -61.70% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

I-25 (US 36 to SH 14) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs between US36 and $120^{\text {th }}$ Avenue southbound during the morning peak period and northbound during the afternoon peak period. Travel time variability for northbound and southbound directions in the peak periods varies between 10 and 34 percent. This data was collected in June 2009.

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.10
Corridor Length	52.3 Miles		AM SB-1.09
Facility Type	Interstate - Urban/Rural		PM NB-1.08
Speed Limit	$55-75 \mathrm{mph}$		PM SB-1.08
CDOT Region(s)	Region 4 \& Region 6	Annual Vehicle Hours of Delay	1,837,900
Corridor Measures		Annual Person Hours of Delay	2,334,200
Traffic Count per Day	Avg: 103,900 $(48,200-196,600)$		2,334,200
v/c Ratio	. $49-.99$	Annual Congestion Costs	\$37,346,400

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

N N . .
Cobnedo Dequatmem virurctrantation

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+4.42 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+4.98 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+116.79 \%$ per year
- \quad The Annual Vehicle Hours of Delay increased at the rate of $+81.20 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the eastbound direction during the morning peak period and westbound direction during the afternoon peak period. Congestion primarily occurs between Federal Boulevard and the I-25 interchange as well as between Ward Road and Wadsworth Boulevard. Travel time variability for westbound and eastbound directions in the peak periods varies between 4 and 18 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	13.1 Miles
Facility Type	Interstate - Urban
Speed Limit	55-65 mph
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: 114,100 } \\ (79,300-136,700) \end{gathered}$
v/c Ratio	. $56-.94$
Travel Rate Index	AM EB-1.04
	AM WB-1.03
	PM EB-1.03
	PM WB-1.08
Annual Vehicle Hours of Delay	698,800
Annual Person Hours of Delay	817,700
$\begin{gathered} \text { Annual } \\ \text { Congestion Costs } \end{gathered}$	\$13,082,400

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-70 (C-470 to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+6.22 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+17.75 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+11.38 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+1.18 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

I-70 (I-25 to Peña Blvd) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the westbound direction throughout the day. Congestion regularly occurs along the corridor, but is at its worst during the afternoon peak period. Travel time variability for westbound and eastbound directions in the peak periods varies between 3 and 67 percent. This data was collected in May 2009.

Corridor Characteristics	
Corridor Length	10.3 Miles
Facility Type	Interstate - Urban
Speed Limit	55 mph
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: 140,400 } \\ (117,900-164,000) \end{gathered}$
v/c Ratio	. $69-.94$
Travel Rate Index	AM EB-1.07
	AM WB-0.92
	PM EB-1.23
	PM WB-1.54
Annual Vehicle Hours of Delay	2,696,200
Annual Person Hours of Delay	3,154,500
Annual Congestion Costs	\$50,472,500

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -5.74% per year
- The WB Daily Average Travel Time decreased at the rate of -2.63% per year
- The Annual Cost of Congestion increased at the rate of $+12.95 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+0.61 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

I-70 (SH9 to C-470) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are heavier in westbound direction during the Saturday peak period and eastbound during the Sunday peak period. Congestion primarily occurs approaching the Eisenhower Tunnel and Idaho Springs, but is at it worst eastbound in the Sunday peak period from State Highway 9 to the US6 exit. Travel time variability for westbound and eastbound directions in the peak periods varies between 9 and 132 percent. This data was collected in July and August 2009.

Data Collection Period

The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.34 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-70 (SH 9 to C-470) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+7.41 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+0.06 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+170.69 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+111.42 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

I-70 (Edwards to Vail East Exit) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are generally equally distributed between westbound and eastbound directions during both Saturday and Sunday peak periods. Travel time variability for westbound and eastbound directions in the peak periods varies between 3 and 6 percent. This data was collected in August 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.35 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.99 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+3.08 \%$ per year
- The Annual Cost of Congestion decreased at the rate of -30.21% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -47.65% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are generally heavier in the eastbound direction during the Saturday peak period and westbound in the Sunday peak period. Travel time variability for westbound and eastbound directions in the peak periods varies between 4 and 26 percent. This data was collected in August 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.39 persons per vehicle. Based on the 2008 Average Vehicle Occupancy Study of the Colorado State highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-70 (Rifle to No Name Interchange) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+6.00 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -1.36% per year
- The Annual Cost of Congestion increased at the rate of $+2764.45 \%$ per year**
- The Annual Vehicle Hours of Delay increased at the rate of $+2761.16 \%$ per year**
** Increase in Annual congestion costs and Annual vehicle hours of delay is due to construction activities in Years 2008 and 2009

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching I-25. Travel time variability for westbound and eastbound directions in the peak periods varies between 7 and 80 percent. This data was collected in September 2009.

Corridor Characteristics	
Corridor Length	5.1 Miles
Facility Type	Interstate - Urban
Speed Limit	55 mph
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	Avg: 79,500 $(78,100-81,100)$
V/C Ratio	$.89-1.02$
Travel Rate Index	AM EB-1.05
	AM WB-1.25
	PM EB-1.06
Annual Vehicle Hours of Delay	75,300
Annual Person Hours of Delay	88,100
Annual Congestion Costs	$\$ 1,409,600$

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-76 (I-25 to I-70) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+27.44 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+18.03 \%$ per year
- The Annual Cost of Congestion decreased at the rate of -38.53% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -44.53% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction throughout the day. Congestion can occur throughout the corridor but is at its worst in segments such as between I-25 and Parker Road, Iliff and Alameda Avenues, and Colfax Avenue and I-70. Travel time variability for the northbound and southbound directions in the peak periods varies between 11 and 74 percent. This data was collected in June, 2009.

Data Collection Period The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.19
Corridor Length	12.0 Miles		AM SB-1.47
Facility Type	Interstate - Urban		PM NB-1.46
Speed Limit	$55-65 \mathrm{mph}$		PM SB-1.28
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	2,742,700
Corridor Measures		Annual Person Hours of Delay	3,209,000
Traffic Count	Avg: 123,300		
per Day	$\frac{(119,400-130,800)}{.74-1.11}$	Annual Congestion Costs	\$51,343,400

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-225 (I-70 to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+4.36 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -8.90% per year
- The Annual Cost of Congestion increased at the rate of $+11.85 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+0.91 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

I-270 (I-70 to I-76) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the eastbound direction during both morning and afternoon peak periods. Congestion primarily occurs eastbound between I-76 and Vasquez Boulevard and westbound between I-70 and Vasquez Boulevard. Travel time variability for westbound and eastbound directions in the peak periods varies between 8 and 85 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	5.0 Miles
Facility Type	Interstate - Urban
Speed Limit	55 mph
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: } 99,800 \\ (90,900-113,200) \end{gathered}$
v/c Ratio	. 82 - . 85
Travel Rate Index	AM EB-1.34
	AM WB-1.08
	PM EB-1.09
	PM WB-1.86
Annual Vehicle Hours of Delay	1,009,600
Annual Person Hours of Delay	1,181,300
Annual Congestion Costs	\$18,900,500

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.17 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

I-270 (I-70 to I-76) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -8.86\% per year
- The WB Daily Average Travel Time increased at the rate of $+2.86 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+6.48 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -3.04\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 6 (I-70 to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion primarily occurs between Wadsworth and Sheridan Boulevards and approaching the l- 25 interchange. Travel time variability for westbound and eastbound directions in the peak periods varies between 9 and 105 percent. This data was collected in April 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.2 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -2.78% per year
- The WB Daily Average Travel Time decreased at the rate of -8.54% per year
- The Annual Cost of Congestion decreased at the rate of -1.27% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -10.69% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 6 (${ }^{\text {st }}$ St to I-70 Business) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Travel time variability for westbound and eastbound directions in the peak periods varies between 24 and 45 percent. This data was collected in October 2009.

Travel Time Variability by Time Period
for October 2009

Corridor Characteristics	
Corridor Length	4.1 Miles
Facility Type	Arterial - Urban
Speed Limit	$30-40 \mathrm{mph}$
CDOT Region(s)	Region 3
Corridor Measures	
Traffic Count per Day	Avg: 24,200
v/c Ratio Travel Rate Index	$.45-.61$
Ty	AM WB-1.03
	PM EB-1.16
Annual Vehicle Hours of Delay	PM WB-1.14
Annual Person Hours of Delay	171,400
Annual Congestion Costs	236,500

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.38 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 6 ($1^{\text {st }}$ St to I-70 Business) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+7.08 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+6.24 \%$ per year
- The Annual Cost of Congestion decreased at the rate of -1.03% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -25.11\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 6 - Vasquez Blvd. ($56^{\text {th }}$ Ave to $77^{\text {th }}$ Ave) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs approaching $60^{\text {th }}, 69^{\text {th }}$, and $72^{\text {nd }}$ Avenues. Congestion is compounded by the high number of heavy vehicles that use this corridor. Travel time variability for northbound and southbound directions in the peak periods varies between 49 and 73 percent. This data was collected in April 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.04
Corridor Length	2.9 Miles		AM SB-1.35
Facility Type	Arterial - Urban		PM NB—1.71
Speed Limit	45 mph		PM SB-1.36
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	372,900
Corridor Measures		Annual Person Hours of Delay	473,600
Traffic Count	Avg: 29,500		
v/c Ratio	. $72-.92$	Annual Congestion Costs	\$7,578,100

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+6.29 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -13.92% per year
- The Annual Cost of Congestion increased at the rate of $+4.94 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -13.98% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 6/SH 119 (SH 93 to Gregory St) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are heavier in the westbound direction during the Saturday peak period and near equally distributed in the westbound and eastbound directions during the Sunday peak period. Congestion primarily occurs between SH93 and the US6-SH119 Junction, and between Richman and Gregory Streets. Travel time variability for westbound and eastbound directions in the peak periods varies between 11 and 21 percent. This data was collected in July 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.36 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -1.10\% per year
- The WB Daily Average Travel Time increased at the rate of $+1.77 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+335.23 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+232.95 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 24 (SH 67 to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion occurs approaching State Highway 67, Fountain Avenue, $8^{\text {th }}$ Street, $21^{\text {st }}$ Street, $31^{\text {st }}$ Street, and I- 25 . Travel time variability for westbound and eastbound directions in the peak periods varies between 6 and 13 percent. This data was collected in November 2009.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.33 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.53 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+1.81 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+20.70 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -4.94% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the eastbound direction throughout the day. Congestion primarily occurs approaching $11^{\text {th }}, 35^{\text {th }}, 47^{\text {th }}$, and Monroe Avenues as well as US287. Travel time variability for westbound and eastbound directions in the peak periods varies between 7 and 17 percent. This data was collected in early November 2009.

Travel Time Variability by Time Period
 for November 2009

Corridor Characteristics	
Corridor Length	21.2 Miles
Facility Type	Freeway/Arterial Urban/Rural
Speed Limit	$35-65 \mathrm{mph}$
CDOT Region(s)	Region 4
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: } 35,300 \\ (34,400-36,000) \\ \hline \end{gathered}$
v/c Ratio	. $80-1.03$
Travel Rate Index	AM EB-1.02
	AM WB-1.00
	PM EB-1.09
	PM WB-1.14
Annual Vehicle Hours of Delay	633,200
Annual Person Hours of Delay	804,200
$\begin{gathered} \text { Annual } \\ \text { Congestion Costs } \end{gathered}$	\$12,867,400

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 34 (US 287 to US 85) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -1.73% per year
- The WB Daily Average Travel Time decreased at the rate of -4.50% per year
- The Annual Cost of Congestion increased at the rate of $+14.70 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -2.08% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are near equally distributed between westbound and eastbound directions for both Saturday and Sunday peak periods. Travel time variability for westbound and eastbound directions in the peak periods varies between 6 and 21 percent. This data was collected in July 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.11 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+3.88 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+0.53 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+27.94 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+22.33 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 36 (Canyon Blvd to SH 157) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs between Canyon Boulevard and Colorado Avenue. Travel time variability for westbound and eastbound directions in the peak periods varies between 13 and 79 percent. This data was collected in October 2009.

Corridor Characteristics	
Corridor Length	2.9 Miles
Facility Type	Freeway/Arterial - Urban
Speed Limit	$35-65 \mathrm{mph}$
CDOT Region(s)	Region 4
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: 47,200 } \\ (43,900-52,900) \end{gathered}$
v/c Ratio	. $58-.79$
Travel Rate Index	AM EB-1.02
	AM WB-1.23
	PM EB-1.27
	PM WB-1.24
Annual Vehicle Hours of Delay	527,100
Annual Person Hours of Delay	685,200
Annual Congestion Costs	\$10,963,700

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.30 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.04 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -4.75% per year
- The Annual Cost of Congestion increased at the rate of $+79.09 \%$ per year
- \quad The Annual Vehicle Hours of Delay increased at the rate of $+45.57 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period near Federal Boulevard and heavier in the westbound direction in the morning and eastbound in the afternoon peak period west of Wadsworth Boulevard. Congestion occurs in sections along this corridor such as between Foothills Parkway and McCaslin Boulevard, US287 and Church Ranch Parkway, and Sheridan Boulevard and I-25. Travel time variability for westbound and eastbound directions in the peak periods varies between 2 and 120 percent. This data was collected in October 2009.

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.23 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 36 (SH 157 to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -0.91% per year
- The WB Daily Average Travel Time decreased at the rate of -4.74% per year
- The Annual Cost of Congestion decreased at the rate of -17.18% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -30.84% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 36 (SH 66 to Canyon Blvd) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion occurs between Arapahoe Road and Pearl Street and approaching State Highway 119/Diagonal Highway. Travel time variability for northbound and southbound directions in the peak periods varies between 9 and 27 percent. This data was collected in October 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.05
Corridor Length	14.8 Miles		AM SB-1.05
Facility Type	Arterial - Urban/Rural		PM NB-1.13
Speed Limit	35-50 mph		PM SB-1.10
CDOT Region(s)	Region 4	Annual Vehicle Hours of Delay	293,700
Corridor Measures		Annual Person Hours of Delay	340,700
Traffic Count per Day	$\begin{gathered} \text { Avg: } 17,500 \\ (9,300-31,700) \end{gathered}$		
v/c Ratio	. $47-.93$	Annual Congestion Costs	\$5,451,000

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.16 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -0.49% per year
- The SB Daily Average Travel Time increased at the rate of $+4.89 \%$ per year
- The Annual Cost of Congestion decreased at the rate of -27.17% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -33.86\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 40 (CR 129 to Pine Grove Rd) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are near equally distributed in the westbound and eastbound directions throughout the day for both Saturday and Sunday peak periods. Travel time variability is affected by on-street parking in Downtown Steamboat Springs between $3^{\text {rd }}$ and $7^{\text {th }}$ Streets and varies for westbound and eastbound directions in the peak periods between 10 and 37 percent. This data was collected in August 2009.

Data Collection Period
The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	SAT EB-1.11
Corridor Length	3.3 Miles		SAT WB-1.12
Facility Type	Arterial - Urban		SUN EB-1.10
Speed Limit	25-40 mph		SUN WB-1.08
CDOT Region(s)	Region 3	Annual Vehicle Hours of Delay	70,400
Corridor Measures		Annual Person Hours of Delay	97,200
Traffic Count	Avg: 16,800		
per Day	. $56-1.14$	Annual Congestion Costs	\$1,555,300

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.38 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -1.91% per year
- The WB Daily Average Travel Time increased at the rate of $+0.25 \%$ per year
- The Annual Cost of Congestion decreased at the rate of -26.82% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -44.64% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 40 (CR 8/5 to I-70) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are generally heavier in the westbound direction during the Saturday peak period and eastbound during the Sunday peak period. Travel time variability for westbound and eastbound directions in the peak periods varies between 6 and 11 percent. This data was collected in July and August 2009.

Data Collection Period
The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	SAT NB-1.05
Corridor Length	31.0 Miles		SAT SB-1.02
Facility Type	Arterial - Rural		SUN NB-1.03
Speed Limit	35-55 mph		SUN SB-1.08
CDOT Region(s)	Region 1 and Region 3	Annual Vehicle Hours of Delay	154,200
Corridor Measures		Annual Person Hours of Delay	208,200
Traffic Count	Avg: 12,500		
per Day	$\frac{(10,300-15,400)}{.70-1.00}$	Annual Congestion Costs	\$3,331,400

Travel Time Variability by Time Period for July and August 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.35 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Westbound-WB, Eastbound-EB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+0.76 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -1.34% per year
- The Annual Cost of Congestion increased at the rate of $+43.59 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+12.82 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching $27^{\text {th }}$ Road, Unweep, and Pitkin Avenues. Travel time variability for westbound and eastbound directions in the peak periods varies between 22 and 48 percent. This data was collected in October 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM EB-1.07
Corridor Length	2.0 Miles		AM WB-1.26
Facility Type	Arterial - Urban		PM EB-1.09
Speed Limit	45 mph		PM WB-1.19
CDOT Region(s)	Region 3	Annual Vehicle Hours of Delay	86,600
Corridor Measures		Annual Person Hours of Delay	119,500
Traffic Count	Avg: 21,500		
V/C Ratio	. $36-.92$	Annual Congestion Costs	\$1,911,700

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.38 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 50 (Ute Ave to $\mathbf{2 7 . 0 0}$ Rd) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -8.83% per year
- The WB Daily Average Travel Time decreased at the rate of -28.94% per year
- The Annual Cost of Congestion decreased at the rate of -45.98% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -62.04\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 50 (Purcell Blvd. to Fortino Blvd.) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion primarily occurs approaching Purcell and Fortino Boulevards. Travel time variability for westbound and eastbound directions in the peak periods varies between 17 and 59 percent. This data was collected in November 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.29 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.17 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -4.89% per year
- The Annual Cost of Congestion decreased at the rate of -22.51% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -38.61% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 50 (SH 141 to 27.00 Rd) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching $27^{\text {th }}, 29^{\text {th }}$, and $32^{\text {nd }}$ (SH 141) Roads. Travel time variability for westbound and eastbound directions in the peak periods varies between 15 and 25 percent. This data was collected in October 2009.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.38 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 50 (SH 141 to 27.00 Rd) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+5.93 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+10.60 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+170.28 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+106.39 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound direction during the morning peak period and northbound in the evening peak period. Congestion occurs in multiple segments along the corridor such as between I- 76 and $124^{\text {th }}$ Avenue, Bromley Lane and $168^{\text {th }}$ Avenue, and between $1^{\text {st }}$ Street and US-34. Travel time variability for northbound and southbound directions in the peak periods varies between 11 and 17 percent. This data was collected in June 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.05
Corridor Length	38.8 Miles		AM SB-1.05
Facility Type	Freeway/Arterial Urban/Rural		PM NB—1.07
Speed Limit	40-65 mph		PM SB-1.11
CDOT Region(s)	Region 4 \& Region 6	Annual Vehicle Hours of Delay	667,400
Corridor Measures		Annual Person Hours of Delay	
Traffic Count	$\begin{gathered} \text { Avg: } 23,700 \\ (16,900-35,200) \\ \hline \end{gathered}$		774,200
v/c Ratio	$\frac{(16,900-35,200)}{.12-.93}$	Annual Congestion Costs	\$12,386,800

Travel Time Variability by Time Period for June 2009

(NB)
(SB)
(NB)
(SB)

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.16 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction
(Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+3.43 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -0.25% per year
- The Annual Cost of Congestion decreased at the rate of -9.74% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -17.68% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 85 - Santa Fe Dr. (Highlands Ranch Pkwy to SH 40) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion occurs in multiple segments along the corridor such as between C470 and Mineral Avenue, Union and Dartmouth Avenues, and Mississippi and Alameda Avenues. Congestion is also encountered approaching Bowles and Colfax Avenues. Travel time variability for northbound and southbound directions in the peak periods varies between 22 and 41 percent. This data was collected in May 2009.

Corridor Characteristics		Travel Rate Index	AM NB-1.18
Corridor Length	14.8 Miles		AM SB-1.07
Facility Type	Freeway/Arterial Urban		PM NB-1.23
Speed Limit	35-55 mph		PM SB-1.38
CDOT Region(s)	Regions 1 and Region 6	Annual Vehicle Hours of Delay	1,408,600
Corridor Measures		Annual Person Hours of Delay	1,690,400
Traffic Count per Day	$\begin{gathered} \text { Avg: 41,100 } \\ (18,800-72,600) \\ \hline \end{gathered}$		
v/c Ratio	. $75-1.07$	Annual Congestion Costs	\$27,046,000

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.2 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -0.61% per year
- The SB Daily Average Travel Time decreased at the rate of -5.72% per year
- The Annual Cost of Congestion increased at the rate of $+123.94 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+103.22 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are near equally distributed between northbound and southbound directions throughout the day. Congestion primarily occurs approaching Meadows/Founders Parkway and near Highlands Ranch Parkway. Travel time variability for northbound and southbound directions in the peak periods varies between 6 and 18 percent. This data was collected in October and November 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.05
Corridor Length	13.4 Miles		AM SB-1.09
Facility Type	Arterial - Urban/Rural		PM NB-1.05
Speed Limit	45-55 mph		PM SB-1.14
CDOT Region(s)	Region 1	Annual Vehicle Hours of Delay	122,000
Corridor Measures		Annual Person	154,900
Traffic Count	Avg: 19,200	Hours of Delay	154,900
v/c Ratio	$\frac{(14,700-26,500)}{.46-.87}$	Annual Congestion Costs	\$2,478,900

Travel Time Variability by Time Period for October and November 2009

(NB)
(SB)
(NB)
(SB)
(NB)
(SB)

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+1.47 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -3.66% per year
- The Annual Cost of Congestion decreased at the rate of -44.27% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -55.35% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 160 (CR 2301 to CR 25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion primarily occurs approaching Piedra Road, Pinon Causeway, and Pagosa Boulevard. Travel time variability for westbound and eastbound directions in the peak periods varies between 24 and 42 percent. This data was collected in June 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.24 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+10.07 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+17.06 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+73.78 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+47.75 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching the north and south US550/US160 junctions. Travel time variability for westbound and eastbound directions in the peak periods varies between 14 and 59 percent. This data was collected in June 2009.

Corridor Characteristics	
Corridor Length	7.7 Miles
Facility Type	Arterial - Urban/Rural
Speed Limit	$35-65 \mathrm{mph}$
CDOT Region(s)	Region 5
Corridor Measures	
Traffic Count per Day	Avg: 21,700 $(10,600-29,100)$
v/c Ratio	. $52-.95$
Travel Rate Index	AM EB-1.24
	AM WB-1.06
	PM EB-1.10
	PM WB-1.17
Annual Vehicle Hours of Delay	391,900
Annual Person Hours of Delay	517,400
Annual Congestion Costs	\$8,277,700

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.32 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 160 (CR 207 to US 550 South) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+30.85 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+9.70 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+101.05 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+67.20 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 160 (US 550 to US 160 Business) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching CR 501/521, SH 172, CR 233 and US 550 south. Travel time variability for westbound and eastbound directions in the peak periods varies between 5 and 102 percent. This data was collected in June 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.26 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+4.98 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+22.28 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+66.12 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+41.55 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 285 - Hampden Ave. (US 85 to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in eastbound direction during the morning peak period and westbound during the afternoon peak periods. Congestion primarily occurs in two segments along the corridor, between US-85 and Broadway, and between University Boulevard and Happy Canyon Road. Travel time variability for westbound and eastbound directions in the peak periods varies between 16 and 128 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	4.6 Miles
Facility Type	Arterial - Urban
Speed Limit	$35-55 \mathrm{mph}$
CDOT Region(s)	Region 6

Corridor Measures

Traffic Count per Day	Avg: 60,000
v/c Ratio	$.80-.98$
	AM EB—1.38
	AM WB-1.22
	PM EB—1.20
Annual Vehicle Hours of Delay	PM WB—1.35
Annual Person Hours of Delay	$1,363,600$
Annual Congestion Costs	$\$ 23,249,100$

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+8.21 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+14.81 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+12.71 \%$ per year
- \quad The Annual Vehicle Hours of Delay increased at the rate of $+12.71 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion occurs primarily approaching the US-85 interchange, Federal and Lowell Boulevards Travel time variability for westbound and eastbound directions in the peak periods varies between 23 and 103 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	4.5 Miles
Facility Type	Freeway - Urban
Speed Limit	$35-55 \mathrm{mph}$
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	Avg: 71,500
v/c Ratio $.86-.90$ AM EB-1.47 PM EB-1.05 PM WB-1.37 Annual Vehicle Hours of Delay 571,800 Annual Person Hours of Delay 686,200 Annual Congestion Costs $\$ 10,978,700$	

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.20 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+21.79 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+12.86 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+392.94 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+314.02 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 287- S. College Ave. (Drake Rd. to Mulberry St.) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs approaching Mulberry Street, Drake, and Prospect Roads. Travel time variability for northbound and southbound directions in the peak periods varies between 18 and 100 percent. This data was collected in April 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.01
Corridor Length	2.0 Miles		AM SB-1.07
Facility Type	Arterial - Urban		PM NB-1.12
Speed Limit	40 mph		PM SB-1.67
CDOT Region(s)	Region 4	Annual Vehicle Hours of Delay	566,400
Corridor Measures		Annual Person Hours of Delay	736,300
Traffic Count per Day	Avg: 46,900		
v/c Ratio	. 68 - . 82	Annual Congestion Costs	\$11,780,500

Travel Time Variability by Time Period for April 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.30 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+23.48 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -9.60% per year
- The Annual Cost of Congestion increased at the rate of $+56.11 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+30.22 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 287 (US 36 to Nickel St.) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in southbound direction during the morning peak period and northbound during the afternoon peak period. Congestion occurs throughout the corridor but is at its worst approaching $84^{\text {th }}$ Avenue, $120^{\text {th }}$ Avenue and Lowell Boulevard. Travel time variability for northbound and southbound directions in the peak periods varies between 28 and 51 percent. This data was collected in June 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.07
Corridor Length	9.3 Miles		AM SB-1.11
Facility Type	Freeway/Arterial Urban/Rural		PM NB—1.39
Speed Limit	$30-55 \mathrm{mph}$		PM SB-1.24
CDOT Region(s)	Region 4 \& Region 6	Annual Vehicle Hours of Delay	736,000
Corridor Measures		Annual Person Hours of Delay	334,700
Traffic Count	$\begin{gathered} \text { Avg: } 30,500 \\ (23,600-37,900) \\ \hline \end{gathered}$		934,70
v/c Ratio	$\frac{(23,600-37,900)}{.73-1.05}$	Annual Congestion Costs	\$14,955,000

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 287 (US 36 to Nickel St.) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -1.95% per year
- The SB Daily Average Travel Time decreased at the rate of -4.98% per year
- The Annual Cost of Congestion decreased at the rate of -15.47% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -30.66% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 287 (Midway Blvd. to US 34) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound directions in the morning peak period and northbound in the afternoon peak period. Congestion occurs throughout the corridor but is at its worst approaching Midway Boulevard, Baseline Road, SH-119, and US-34. Travel time variability for northbound and southbound directions in the peak periods varies between 7 and 17 percent. This data was collected in June 2009.

Data Collection Period The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-0.99
Corridor Length	35.2 Miles		AM SB-0.99
Facility Type	Freeway/Arterial Urban/Rural		PM NB-1.13
Speed Limit	30-55 mph		PM SB-1.13
CDOT Region(s)	Region 4 \& Region 6	Annual Vehicle Hours of Delay	1,407,200
Corridor Measures		Annual Person	
Traffic Count	Avg: 30,900	Hours of Delay	1,716,800
v/c Ratio	$\frac{(23,500-39,0}{\text {. } 44-1.12}$	Annual Congestion Costs	\$27,468,100

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.22 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 287 (Midway Blvd. to US 34) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+3.63 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+7.80 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+32.20 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+16.53 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs approaching $29^{\text {th }}, 38^{\text {th }}$, $64^{\text {th }}$, and $72^{\text {nd }}$ Avenues, as well as Speer Boulevard. Travel time variability for northbound and southbound directions in the peak periods varies between 24 and 78 percent. This data was collected in October and November 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.11
Corridor Length	6.8 Miles		AM SB-1.27
Facility Type	Arterial - Urban		PM NB-129
Speed Limit	35-45 mph		PM SB-1.23
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	767,800
Corridor Measures		Annual Person	975,100
Traffic Count	Avg: 35,500	Hours of Delay	5,100
per Day	$.66-.99$	Annual Congestion Costs	\$15,602,300

Travel Time Variability by Time Period for October and November 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+3.00 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+6.40 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+7.45 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -12.10% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 550 (US 160 North to $\mathbf{2 5}^{\text {th }}$ St.) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs approaching College Drive, Main, and $32^{\text {nd }}$ Streets. Travel time variability for northbound and southbound directions in the peak periods varies between 26 and 219 percent. This data was collected in June 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.04
Corridor Length	1.7 Miles		AM SB-1.17
Facility Type	Arterial - Urban/Rural		PM NB-1.38
Speed Limit	35 mph		PM SB-1.57
CDOT Region(s)	Region 5	Annual Vehicle Hours of Delay	246,000
Corridor Measures		Annual Person Hours of Delay	329,600
Traffic Count	Avg: 31,200		
v/c Ratio	. 78 - . 93	Annual Congestion Costs	\$5,273,400

Travel Time Variability by Time Period for June 2009

(NB)
(SB)

Noon-Peak Noon-Peak
(NB) (SB)

- High • Average \leqslant Low

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.34 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -5.73\% per year
- The SB Daily Average Travel Time decreased at the rate of -3.74% per year
- The Annual Cost of Congestion decreased at the rate of -31.95% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -48.07% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 550 (CR 220 to US 160 South) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs approaching the US-160/ SH-550 junction. Travel time variability for northbound and southbound directions in the peak periods varies between 23 and 33 percent. This data was collected in June 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.12
Corridor Length	0.80 Miles		AM SB-1.11
Facility Type	Arterial - Rural		PM NB—1.09
Speed Limit	35-45 mph		PM SB-1.05
CDOT Region(s)	Region 5	Annual Vehicle Hours of Delay	18,600
Corridor Measures		Annual Person Hours of Delay	23,100
Traffic Count per Day	Avg: 8,100		
v/c Ratio	. $34-.64$	Annual Congestion Costs	\$369,200

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.24 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 550 (CR 220 to US 160 South) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -3.33\% per year
- The SB Daily Average Travel Time decreased at the rate of -0.88% per year
- The Annual Cost of Congestion decreased at the rate of -57.19% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -65.12% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

US 550 (CR 203A to CR 250) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally equally distributed between northbound and southbound directions throughout the day, however volumes near County Road 250 are heavier northbound in the morning peak and southbound in the afternoon peak. Travel time variability for northbound and southbound directions in the peak periods varies between 7 and 24 percent. This data was collected in June and September 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.06
Corridor Length	9.9 Miles		AM SB-1.04
Facility Type	Arterial - Urban/Rural		PM NB-1.06
Speed Limit	$35-60 \mathrm{mph}$		PM SB-1.07
CDOT Region(s)	Region 5	Annual Vehicle Hours of Delay	7,900
Corridor Measures		Annual Person	
Traffic Count	Avg: 9,700	Hours of Delay	10,000
v/c Ratio	. $39-.85$	Annual Congestion Costs	\$159,600

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

US 550 (CO Rd 203A to CO Rd 250) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+0.31 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+2.26 \%$ per year
- The Annual Cost of Congestion decreased at the rate of -16.99% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -28.92% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

C-470 (SH 121 to I-70) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching the US 285 interchange and Wadsworth Boulevard (SH121). Travel time variability for westbound and eastbound directions in the peak periods varies between 5 and 61 percent. This data was collected in May 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.2 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

C-470 (SH 121 to I-70) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+7.56 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+3.96 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+4.23 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -6.64% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

C-470 (SH 121 to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion primarily occurs in the segment between US85 and Quebec Street. Travel time variability for westbound and eastbound directions in the peak periods varies between 4 and 80 percent. This data was collected in June 2009.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.20 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

C-470 (SH 121 to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -5.01% per year
- The WB Daily Average Travel Time increased at the rate of $+26.55 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+41.54 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+24.62 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 2-Colorado Blvd. (US 285 to I-70) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion occurs in several segments along the corridor such as between Montview Boulevard and $8^{\text {th }}$ Avenue, Alameda and Mississippi Avenues, and Mexico and Evans Avenues. Travel time variability for northbound and southbound directions in the peak periods varies between 13 and 43 percent. This data was collected in April and May 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-0.98
Corridor Length	8.8 Miles		AM SB-1.16
Facility Type	Arterial - Urban		PM NB-1.30
Speed Limit	$35-40 \mathrm{mph}$		PM SB-1.32
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	1,999,100
Corridor Measures		Annual Person	2538,800
Traffic Count	Avg: 42,300	Hours of Delay	2,538,800
V/C Ratio	$\frac{(23,100-53,100)}{.49-.95}$	Annual Congestion Costs	\$40,620,800

Travel Time Variability by Time Period for April and May 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -6.08\% per year
- The SB Daily Average Travel Time increased at the rate of $+0.04 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+36.78 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+16.49 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 2 ($72^{\text {nd }}$ Ave to $96^{\text {th }}$ Ave) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs near $72^{\text {nd }}$ Avenue, this is compounded by the high number of heavy vehicles that use this corridor. Travel time variability for northbound and southbound directions in the peak periods varies between 17 and 74 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	4.0 Miles
Facility Type	Arterial - Urban
Speed Limit	40-55 mph
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	Avg: 13,500
v/c Ratio	. $74-.92$
Travel Rate Index	AM NB-1.13
	AM SB-1.10
	PM NB-1.19
	PM SB-1.21
Annual Vehicle Hours of Delay	80,000
Annual Person Hours of Delay	101,500
(Congestion Costs	\$1,624,700

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Year 2009

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+9.80 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+11.54 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+35.99 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+14.46 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 7-Arapahoe Rd. (Cherryvale Rd to US 287) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching Cherryvale Road, $95^{\text {th }}$ Street, and US287. Travel time variability for westbound and eastbound directions in the peak periods varies between 16 and 54 percent. This data was collected in April 2009.

Travel Time Variability by Time Period for April 2009

Corridor Characteristics	
Corridor Length	5.9 Miles
Facility Type	Arterial - Urban/Rural
Speed Limit	40-50 mph
CDOT Region(s)	Region 4
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: } 18,900 \\ (16,700-20,900) \end{gathered}$
v/c Ratio	. $96-1.13$
Travel Rate Index	AM EB-1.02
	AM WB-1.21
	PM EB-1.51
	PM WB-1.05
Annual Vehicle Hours of Delay	215,600
Annual Person Hours of Delay	312,600
Annual Congestion Costs	\$5,002,000

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.45 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 7-Arapahoe Rd. (Cherryvale Rd to US 287) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+12.18 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -8.62% per year
- The Annual Cost of Congestion increased at the rate of $+24.85 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -5.57% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 7-Baseline Rd. (US-287 to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs in the segment between Lowell Boulevard and $111^{\text {th }}$ Street. Travel time variability for westbound and eastbound directions in the peak periods varies between 15 and 39 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	6.9 Miles
Facility Type	Arterial - Urban
Speed Limit	$45-65 \mathrm{mph}$
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: 18,400 } \\ (16,200-19,600) \end{gathered}$
v/c Ratio	. $79-1.11$
Travel Rate Index	AM EB-1.11
	AM WB-1.19
	PM EB-1.13
	PM WB-1.12
Annual Vehicle Hours of Delay	397,800
Annual Person Hours of Delay	505,200
Annual Congestion Costs	\$8,083,600

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 7-Baseline Rd. (US-287 to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -1.41% per year
- The WB Daily Average Travel Time increased at the rate of $+0.04 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+4.83 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -12.23% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are heavier in the northbound direction during the Saturday peak period and southbound during the Sunday peak period. Congestion primarily occurs between $4^{\text {th }}$ Street and the I-70 interchange. Travel time variability for northbound and southbound directions in the peak periods varies between 31 and 141 percent. This data was collected in August 2009.

Data Collection Period
The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	SAT NB-1.20
Corridor Length	2.5 Miles		SAT SB-1.24
Facility Type	Arterial - Urban/Rural		SUN NB—1.21
Speed Limit	$35-55 \mathrm{mph}$		SUN SB-1.62
CDOT Region(s)	Region 1	Annual Vehicle Hours of Delay	41,100
Corridor Measures		Annual Person Hours of Delay	48,500
Traffic Count	Avg: 14,600		
v/c Ratio	. $50-.89$	Annual Congestion Costs	\$775,400

Travel Time Variability by Time Period

 for August 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.18 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (NorthboundNB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 9 (I-70 to CR 1900) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -4.69\% per year
- The SB Daily Average Travel Time decreased at the rate of -19.46% per year
- The Annual Cost of Congestion decreased at the rate of -36.52% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -44.27% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 9 (I-70 to Boreas Pass Rd) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are near equally distributed in the northbound and southbound directions for both Saturday and Sunday peak periods. Congestion primarily occurs between Boreas Pass Road and County Road 450 and near Coyne Valley Road. Travel time variability for northbound and southbound directions in the peak periods varies between 20 and 49 percent. This data was collected in July 2009.

Data Collection Period

The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	SAT NB-1.12
Corridor Length	11.1 Miles		SAT SB-1.22
Facility Type	Arterial - Urban/Rural		SUN NB—1.12
Speed Limit	25-50 mph		SUN SB-1.18
CDOT Region(s)	Region 1	Annual Vehicle Hours of Delay	311,600
Corridor Measures		Annual Person Hours of Delay	398,800
Traffic Count	Avg: 20,700		
v/c Ratio	(14,500-25,	Annual Congestion Costs	\$6,380,700

Travel Time Variability by Time Period

 for July 2009
-High •Average \bullet Low

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.28 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State Highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday Peak, Sunday Peak, Off Peak) and direction (NorthboundNB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+3.22 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+8.36 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+46.12 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+21.76 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 30 (I-25 to I-225) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion occurs in multiple areas along the corridor such as approaching I-225, $6^{\text {th }}$ Avenue, Mississippi Avenue, Parker Road, and I-25. Travel time variability for westbound and eastbound directions in the peak periods varies between 10 and 47 percent. This data was collected in September and October 2009.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 30 (I-25 to I-225) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -0.58% per year
- The WB Daily Average Travel Time decreased at the rate of -0.81% per year
- The Annual Cost of Congestion increased at the rate of $+8.36 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -8.14\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 30 (I-225 to Hampden Ave.) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound directions during the morning peak period and eastbound in the afternoon peak period. Congestion occurs approaching l-225, Chambers Road, and Airport Boulevard. Travel time variability for westbound and eastbound directions in the peak periods varies between 18 and 29 percent. This data was collected in June 2009.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.31 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 30 (I-225 to Hampden Ave.) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.72 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -1.02% per year
- The Annual Cost of Congestion increased at the rate of $+13.91 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -5.95% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 45 - Pueblo Blvd. (Lehigh St. to SH 96) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during morning peak period and in the southbound direction during the afternoon peak period. Congestion primarily occurs approaching Thatcher Avenue. Travel time variability for northbound and southbound directions in the peak periods varies between 12 and 89 percent. This data was collected in November 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.28
Corridor Length	1.2 Miles		AM SB-1.09
Facility Type	Freeway/Arterial - Urban		PM NB-1.38
Speed Limit	40-45 mph		PM SB-1.10
CDOT Region(s)	Region 2	Annual Vehicle Hours of Delay	75,400
Corridor Measures		Annual Person Hours of Delay	96,600
Traffic Count per Day	Avg: 27,500		
v/c Ratio	. $53-.82$	Annual Congestion Costs	\$1,545,000

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.28 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 45 - Pueblo Blvd. (Lehigh St. to SH 96) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+2.74 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -21.94% per year
- The Annual Cost of Congestion increased at the rate of $+9.75 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -7.05% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 82 (I-70 to Old SH 82) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during both the Saturday and Sunday peak periods. Travel time variability for eastbound and westbound directions in the peak periods varies between 16 and 23 percent. This data was collected in August 2009.

Travel Time Variability by Time Period for August 2009

Corridor Characteristics	
Corridor Length	23.7 Miles
Facility Type	Arterial - Urban/Rural
Speed Limit	$25-65 \mathrm{mph}$
CDOT Region(s)	Region 3
Corridor Measures	
Traffic Count per Day	Avg: 23,100 $(18,000-28,400)$
v/c Ratio Travel Rate Index	$.44-.98$
Ty	SAT NB-1.08
	SUN NB-1.08
Annual Vehicle Hours of Delay	SUN SB-1.09
Annual Person Hours of Delay	473,900
Annual Congestion Costs	$\$ 10,463,100$

Data Collection Period

The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary
Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.38 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday-Peak, Off-Peak, Sunday-Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 82 (I-70 to Old SH 82) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -1.85\% per year
- The SB Daily Average Travel Time decreased at the rate of -5.25% per year
- The Annual Cost of Congestion increased at the rate of $+27.73 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -0.81% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 82 (Old SH 82 to West Hallam Ave.) - Travel Time Report

Corridor Summary

This is a recreational corridor. Traffic volumes along this corridor are heavier northbound during both Saturday and Sunday peak periods. Travel time variability for northbound and southbound directions in the peak periods varies between 10 and 33 percent. This data was collected in August 2009.

Data Collection Period
The time periods of data collection included weekend Saturday \& Sunday peak periods (11:30 AM to 5:30 PM) and Saturday \& Sunday off-peak periods (9:30 AM to 11:30 AM \& 5:30 PM to 7:30 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	SAT NB-1.07
Corridor Length	16.7 Miles		SAT SB-1.05
Facility Type	Arterial - Urban/Rural		SUN NB-1.05
Speed Limit	$30-55 \mathrm{mph}$		SUN SB-1.04
CDOT Region(s)	Region 3	Annual Vehicle Hours of Delay	161,600
Corridor Measures		Annual Person Hours of Delay	224,600
Traffic Count	Avg: 19,100		
v/c Ratio	. $33-0.92$	Annual Congestion Costs	\$3,594,000

Snowmass Village

Travel Time Variability by Time Period for August 2009

- High •Average ${ }^{\text {Low }}$

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.39 persons per vehicle. Based on the 2009 Average Vehicle Occupancy Study of the Colorado State highway System.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Saturday-Peak, Off-Peak, Sunday-Peak) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+4.85 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+2.13 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+36.27 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+4.21 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 83 - Parker Rd. (I-225 to SH 2) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion occurs in multiple segments along the corridor such as between I-225 and Peoria Street, Havana Street and Iliff Avenue, and Mississippi Avenue and Monaco Parkway, as well as approaching Colorado Boulevard. Travel time variability for northbound and southbound directions in the peak periods varies between 13 and 36 percent. This data was collected in May 2009.

Corridor Characteristics	
Corridor Length	6.7 Miles
Facility Type	Freeway/Arterial - Urban
Speed Limit	$35-45 \mathrm{mph}$
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	Avg: 41,000 $(32,000-53,900)$
v/c Ratio	$.68-1.06$
Travel Rate Index	AM NB-1.12
	AM SB-1.03
	PM NB-1.18
Annual Vehicle Hours of Delay	$1,290,100$
Annual Person Hours of Delay	$1,638,400$
Annual Congestion Costs	$\$ 26,214,300$

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+13.45 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+2.91 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+61.76 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+36.75 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 83 - Parker Rd. (Lincoln Ave to l-225) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs in two segments along the corridor, between Arapahoe Road and Orchard Road and Quincy Avenue and I-225. Travel time variability for northbound and southbound directions in the peak periods varies between 13 and 45 percent. This data was collected in May and November 2009

Data Collection Period The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.13
Corridor Length	9.6 Miles		AM SB-1.09
Facility Type	Freeway/Arterial - Urban		PM NB-1.33
Speed Limit	45-55 mph		PM SB-1.21
CDOT Region(s)	Region 1 and Region 6	Annual Vehicle Hours of Delay	1,740,100
Corridor Measures		Annual Person	
Traffic Count	Avg: 67,000	Hours of Delay	2,070,700
per Day v/c Ratio	$\frac{(55,600-82,400)}{.72-1.13}$	Annual Congestion Costs	\$33,131,900

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.19 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction
(Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 83 - Parker Rd. (Lincoln Ave to I-225) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+0.25 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+6.46 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+63.16 \%$ per year
- \quad The Annual Vehicle Hours of Delay increased at the rate of $+46.77 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 88 - Arapahoe Rd. (I-25 to SH 83) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion occurs in segments between l-25 and Boston Street, Jordan and Parker Roads, and approaching Peoria Street. Travel time variability for westbound and eastbound directions in the peak periods varies between 23 and 82 percent. This data was collected in May 2009.

Corridor Characteristics	
Corridor Length	4.5 Miles
Facility Type	Arterial - Urban
Speed Limit	$40-55 \mathrm{mph}$
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: 56,100 } \\ (54,700-58,600) \end{gathered}$
v/c Ratio	. $91-1.07$
Travel Rate Index	AM EB-0.92
	AM WB-1.30
	PM EB-1.72
	PM WB-1.18
Annual Vehicle Hours of Delay	1,272,700
Annual Person Hours of Delay	1,616,400
Annual Congestion Costs	\$25,861,900

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 88 - Arapahoe Rd. (1-25 to SH 83) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.06 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -19.27% per year
- The Annual Cost of Congestion increased at the rate of $+4.31 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -13.60% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 88 - Belleview (SH 88 - Federal to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the evening peak period. Congestion primarily occurs approaching Federal Boulevard, Broadway, University Boulevard, and the I-25 interchange. Travel time variability for westbound and eastbound directions in the peak periods varies between 9 and 50 percent. This data was collected in April 2009.

Corridor Characteristics	
Corridor Length	6.7 Miles
Facility Type	Arterial - Urban
Speed Limit	$35-40 \mathrm{mph}$
CDOT Region(s)	Region 6
Corridor Measures	
Traffic Count per Day	Avg: 34,900 $(30,600-39,200)$
v/c Ratio	$.67-1.09$
Travel Rate Index	AM WB-1.08
	PM EB-1.10
	PM WB-1.28
Annual Vehicle Hours of Delay	568,900
Annual Person Hours of Delay	722,500
Annual Congestion Costs	$\$ 11,560,300$

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time decreased at the rate of -0.42% per year
- The WB Daily Average Travel Time decreased at the rate of -5.19% per year
- The Annual Cost of Congestion increased at the rate of $+21.40 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+2.33 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 88 - Federal Blvd. (US 6 to US 285) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs approaching Alameda, Mississippi, Florida, and Evans Avenues as well as US6 and US285 interchanges. Travel time variability for northbound and southbound directions in the peak periods varies between 17 and 38 percent. This data was collected in April 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.02
Corridor Length	5.2 Miles		AM SB-1.18
Facility Type	Arterial - Urban		PM NB-1.02
Speed Limit	35-40 mph		PM SB-1.27
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	601,700
Corridor Measures		Annual Person	764,200
Traffic Count	Avg: 38,000	Hours of Delay	64,200
v/c Ratio	$\text { . } 66-.$	Annual Congestion Costs	\$12,227,300

Travel Time Variability by Time Period for April 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 88 - Federal Blvd. (US 6 to US 285) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+6.33 \%$ per year
- The SB Daily Average Travel Time decreased at the rate of -1.98% per year
- The Annual Cost of Congestion increased at the rate of $+67.73 \%$ per year
- \quad The Annual Vehicle Hours of Delay increased at the rate of $+41.40 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 93 (SH58/US 6 to US 36) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are near equally distributed between northbound and southbound directions throughout the day. Congestion primarily occurs approaching Table Mesa Drive and Baseline Road. Travel time variability for northbound and southbound directions in the peak periods varies between 12 and 16 percent. This data was collected in September and October 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB—1.06
Corridor Length	18.3 Miles		AM SB-1.07
Facility Type	Arterial - Urban/Rural		PM NB-1.09
Speed Limit	30-55 mph		PM SB-1.09
CDOT Region(s)	Region 4 and Region 6	Annual Vehicle Hours of Delay	378,000
Corridor Measures		Annual Person	480,100
Traffic Count	Avg: 20,500	Hours of Delay	480,100
v/c Ratio	. $44-1.00$	Annual Congestion Costs	\$7,682,000

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 93 (SH58/US 6 to US 36) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+3.73 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+2.76 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+44.51 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+21.01 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 95 - Sheridan Blvd. (US 285 to I-70) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs approaching Colfax, Alameda, Florida, and Evans Avenues, as well as the US285 interchange. Travel time variability for northbound and southbound directions in the peak periods varies between 16 and 35 percent. This data was collected in October 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.02
Corridor Length	9.1 Miles		AM SB-1.05
Facility Type	Arterial - Urban		PM NB-1.21
Speed Limit	$35-40 \mathrm{mph}$		PM SB-1.30
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	711,200
Corridor Measures		Annual Person	
Traffic Count	Avg: 35,900	Hours of Delay	903,200
v/c Ratio	. $65-0.90$	Annual Congestion Costs	\$14,451,700

Travel Time Variability by Time Period for October 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -1.57\% per year
- The SB Daily Average Travel Time decreased at the rate of -6.25% per year
- The Annual Cost of Congestion increased at the rate of $+51.62 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+27.40 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 95 - Sheridan Blvd. (1-70 to US 36) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the southbound direction during the morning peak period and northbound in the afternoon peak period. Congestion primarily occurs approaching $52^{\text {nd }}$, $64^{\text {th }}, 72^{\text {nd }}, 80^{\text {th }}$, and $88^{\text {th }}$ Avenues, as well as the US-36 interchange. Travel time variability for northbound and southbound directions in the peak periods varies between 15 and 29 percent. This data was collected in May 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.01
Corridor Length	5.3 Miles		AM SB-0.99
Facility Type	Arterial - Urban		PM NB-1.15
Speed Limit	$35-45 \mathrm{mph}$		PM SB-1.26
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	884,500
Corridor Measures		Annual Person	1,123,400
Traffic Count per Day	$\begin{gathered} \text { Avg: 41,900 } \\ (35,100-51,700) \end{gathered}$	Hours of Delay	1,123,400
v/c Ratio	. $79-1.12$	Congestion Costs	\$17,973,600

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -0.88% per year
- The SB Daily Average Travel Time increased at the rate of $+12.07 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+72.39 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+43.12 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 119 - Diagonal Hwy. (US 287 to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching l-25, County Line Road, and US-287. Travel time variability for westbound and eastbound directions in the peak periods varies between 12 and 149 percent. This data was collected in October 2009.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.22 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 119 - Diagonal Hwy. (US 287 to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+15.57 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+22.24 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+87.28 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+60.86 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 119 (Sugarloaf Rd to Broadway St.) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion primarily occurs approaching Four Mile Canyon Drive, Pearl, $9^{\text {th }}$, and Broadway Streets. Travel time variability for westbound and eastbound directions in the peak periods varies between 12 and 31 percent. This data was collected in September 2009.

Travel Time Variability by Time Period for September 2009

Corridor Characteristics	
Corridor Length	5.3 Miles
Facility Type	Arterial - Urban/Rural
Speed Limit	$35-40 \mathrm{mph}$
CDOT Region(s)	Region 4
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: 9,200 } \\ (7,600-12,000) \end{gathered}$
v/c Ratio	. $36-.91$
Travel Rate Index	AM EB-1.08
	AM WB-1.08
	PM EB-1.17
	PM WB-1.07
Annual Vehicle Hours of Delay	61,400
Annual Person Hours of Delay	97,600
Annual Congestion Costs	\$1,560,800

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.59 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (EastboundEB, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+1.72 \%$ per year
- The WB Daily Average Travel Time increased at the rate of $+6.13 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+48.85 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -1.04\% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 119-Diagonal Hwy. (US 36 to US 287) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the westbound direction during the morning peak period and eastbound in the afternoon peak period. Congestion primarily occurs approaching $28^{\text {th }}$ Street, Highway 52, Hover Street, and US287 (Main Street). Travel time variability for westbound and eastbound directions in the peak periods varies between 17 and 31 percent. This data was collected in October 2009.

Travel Time Variability by Time Period for October 2009

Corridor Characteristics	
Corridor Length	12.0 Miles
Facility Type	Freeway/Arterial - Urban
Speed Limit	$35-65 \mathrm{mph}$
CDOT Region(s)	Region 4
Corridor Measures	
Traffic Count per Day	Avg: 33,700 $(27,900-39,100)$
v/c Ratio	$.36-.91$
Travel Rate Index	AM EB-1.08
	AM WB-1.13
	PM EB-1.20
Annual Vehicle Hours of Delay	589,700
Annual Person Hours of Delay	760,700
Annual Congestion Costs	$\$ 12,171,700$

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.29 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -2.73% per year
- The SB Daily Average Travel Time decreased at the rate of -5.70% per year
- The Annual Cost of Congestion increased at the rate of $+7.84 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -9.60% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 121 - Wadsworth Blvd. (US 40 to US 36) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during the morning peak and heavier southbound in the afternoon peak. Congestion occurs in multiple areas along the corridor such as near Colfax Avenue, I-70 interchange, $80^{\text {th }}$ Avenue, and the US-36 interchange. Travel time variability for northbound and southbound directions in the peak periods varies between 16 and 34 percent. This data was collected in April 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.08
Corridor Length	12.9 Miles		AM SB-1.09
Facility Type	Arterial - Urban		PM NB-1.19
Speed Limit	40-55 mph		PM SB-1.27
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	1,967,500
Corridor Measures		Annual Person	2,498,800
Traffic Count per Day	$\begin{gathered} \text { Avg: 40,800 } \\ (30,100-49,800) \\ \hline \end{gathered}$	Hours of Delay	2,498,8
v/c Ratio	. $70-1.10$	Congestion Costs	\$39,980,600

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -0.53% per year
- The SB Daily Average Travel Time decreased at the rate of -3.51% per year
- The Annual Cost of Congestion increased at the rate of $+21.93 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+1.84 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 121 - Wadsworth Blvd. (C-470 to US 40) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are generally heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs approaching Colfax, Alameda, Yale, Quincy, and Bowles Avenues, as well as C-470 and US-285 interchanges. Travel time variability for northbound and southbound directions in the peak periods varies between 15 and 64 percent. This data was collected in April and May 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.04
Corridor Length	13.2 Miles		AM SB-0.99
Facility Type	Freeway/Arterial - Urban		PM NB-1.17
Speed Limit	40-45 mph		PM SB-1.25
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	1,023,900
Corridor Measures		Annual Person Hours of Delay	279,900
Traffic Count per Day	$\begin{gathered} \text { Avg: 40,300 } \\ (28,200-50,000) \\ \hline \end{gathered}$		1,279,900
v/c Ratio	. $60-1.12$	Annual Congestion Costs	\$20,478,400

Travel Time Variability by Time Period for April and May 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.25 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 121 - Wadsworth Blvd. (C-470 to US 40) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time decreased at the rate of -3.38\% per year
- The SB Daily Average Travel Time decreased at the rate of -2.00% per year
- The Annual Cost of Congestion increased at the rate of $+17.06 \%$ per year
- The Annual Vehicle Hours of Delay decreased at the rate of -0.80% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 177 - S. University Blvd. (C-470/LincoIn to I-25) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the northbound direction during the morning peak period and southbound in the afternoon peak period. Congestion primarily occurs approaching Evans, Hampden, and Belleview Avenues, Orchard Road, and the C470 and I-25 interchanges. Travel time variability for northbound and southbound directions in the peak periods varies between 10 and 36 percent. This data was collected in May 2009 and June 2009.

Data Collection Period
The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Corridor Characteristics		Travel Rate Index	AM NB-1.20
Corridor Length	8.6 Miles		AM SB-1.04
Facility Type	Arterial - Urban		PM NB-1.05
Speed Limit	30-45 mph		PM SB-1.25
CDOT Region(s)	Region 6	Annual Vehicle Hours of Delay	960,400
Corridor Measures		Annual Person	
Traffic Count	Avg: 33,900	Hours of Delay	1,219,700
per Day	$\frac{(32,300-36,100)}{.70-1.00}$	Annual Congestion Costs	\$19,514,800

Travel Time Variability by Time Period for May and June 2009

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.27 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Northbound-NB, Southbound-SB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

SH 177 - S. University Blvd. (C-470/Lincoln to I-25) - Three-Year Data Trend Analysis

Three-Year Trend Analysis Highlights:

- The NB Daily Average Travel Time increased at the rate of $+1.76 \%$ per year
- The SB Daily Average Travel Time increased at the rate of $+15.23 \%$ per year
- The Annual Cost of Congestion increased at the rate of $+75.90 \%$ per year
- The Annual Vehicle Hours of Delay increased at the rate of $+50.28 \%$ per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

SH 340 - Broadway (20 3/4 Rd to I-70 Business) - Travel Time Report

Corridor Summary

This is a commuter corridor. Traffic volumes along this corridor are heavier in the eastbound direction during the morning peak period and westbound in the afternoon peak period. Congestion primarily occurs between West Avenue and $1^{\text {st }}$ Street and approaching Redlands Parkway and $203 / 4$ Road. Travel time variability for westbound and eastbound directions in the peak periods varies between 16 and 29 percent. This data was collected in October 2009

Corridor Characteristics	
Corridor Length	5.7 Miles
Facility Type	Arterial - Urban
Speed Limit	45 mph
CDOT Region(s)	Region 3
Corridor Measures	
Traffic Count per Day	$\begin{gathered} \text { Avg: } 13,800 \\ (7,300-23,800) \end{gathered}$
v/c Ratio	. 49 - . 83
Travel Rate Index	AM EB-1.15
	AM WB-1.10
	PM EB-1.07
	PM WB-1.01
Annual Vehicle Hours of Delay	68,400
Annual Person Hours of Delay	95,000
Annual Congestion Costs	\$1,520,200

Data Collection Period

The time periods of data collection included weekday morning peak period (7 AM to 9 AM), Noon-peak period (11 AM to 1 PM) and afternoon peak period (4 PM to 6 PM). Eight travel runs were conducted in each direction \& during each period. It should be noted that this data is a "snapshot" of one week of data collection for the corridor.

Glossary

Travel Rate Index - Ratio of Peak Travel Time against Off-Peak Travel Time.
Annual Vehicle Hours of Delay - Average delay encountered by vehicles during data collection periods.
Annual Person Hours of Delay - Delay incurred by the users assuming an occupancy of 1.39 persons per vehicle.
Annual Congestion Costs - Cost of congestion due to delay, assuming a value of time of $\$ 16.00$ per hour (per Texas Transportation Institute - June 2009)
Travel Time Variability - The range of travel time for each period (Morning-AM, Noon-Peak, Afternoon-PM) and direction (Eastbound$E B$, Westbound-WB). High and low are the highest and lowest travel times encountered. Average is based on travel time for the period.

Three-Year Trend Analysis Highlights:

- The EB Daily Average Travel Time increased at the rate of $+0.83 \%$ per year
- The WB Daily Average Travel Time decreased at the rate of -0.30% per year
- The Annual Cost of Congestion decreased at the rate of -17.88% per year
- The Annual Vehicle Hours of Delay decreased at the rate of -39.30% per year

* Annual congestion costs due to delay assuming a value of time of $\$ 15.50$ per hour in 2007 and $\$ 16.00$ per hour in 2008 and 2009 (per Texas Transportation Institute)

Appendix H

I-70 Corridor (C-470 to SH 9) Winter Travel Time Data Collection and Analysis Report

Prepared
for
Colorado Department of Transportation
Addendum to the 2009 CDOT Travel Time Study Report
January 2010

Addendum to the 2009 CDOT Travel Time Study Report

Table of Contents

Section 1: Introduction and Purpose of the Project 1
1.1 Introduction 1
1.2 Background and General Travel Time Project Overview 1
1.3 Purpose of the Project and Anticipated Use of Travel Time Data 1
1.4 Summary of Corridor Performance Measures 2
1.5 Purpose of the I-70 Winter Report 3
1.62 Year Comparison: I-70 corridor during winter and summer seasons 3
Section 2: Analysis and Results 4
2.1 Traffic Volumes 4
2.2 Data Collection Periods 6
2.3 Travel Time Characteristics 6
2.4 Corridor Performance Measures 10
Section 3: Conclusion 10
List of Figures
Figure 1. Westbound Average Daily Volumes on I-70 at US 40/Empire for 2008 4
Figure 2. Eastbound Average Daily Volumes on I-70 at US 40/Empire for 2008 5
Figure 3. I-70 Mountain Corridor v/c Ratios 7
Figure 4. Posted Speed Limits Along I-70 8
Figure 5. Saturday Peak Average Travel Speeds 8
Figure 6. Sunday Peak Average Travel Speeds 9
Figure 7. Comparison of EB and WB Winter Average Travel Times for I-70 9

Section 1: Introduction and Purpose of the Project

1.1 Introduction

Interstate 70, between Denver and Silverthorne, is the primary route providing both summer and winter recreational access to and from the central Colorado mountains to the Denver metro area. As part of the CDOT Travel Time Project, travel time runs were collected during the summers between 2007 and 2009 to ascertain impacts on the corridor of the heavy tourism season. During the collection of 2008 data it was determined that winter data collection would also be valuable to ascertain the impacts of the heavy winter season tourism traffic on the corridor. Travel time data was collected on the corridor in January 2009 and 2010.

1.2 Background and General Travel Time Project Overview

Traffic congestion is one of the most significant issues adversely impacting mobility on highways across Colorado. CDOT's Division of Transportation Development (DTD) is responsible for the development and collection of mobility performance measures to quantify how well corridors operate in relation to the volume of vehicles that use them.

Traditional methods of measuring performance such as volume-to-capacity (v/c) ratios, levels of service, etc. are useful but do not always provide a good understanding of corridor performance. These measures can also be difficult to relate in lay terms or to the typical traveler and commuter's daily driving experience. Travel time data is increasingly being collected to augment or replace traditional mobility performance measures. Travel time data serves as a useful tool to measure levels of congestion and overall quality of service for corridors. It has the ability to identify areas of congestion and excessive delay, identical to actual driving conditions encountered by the traveling public. CDOT DTD has conducted travel time studies on select congested corridors (v / c ratio ≥ 0.85) since the year 2000. Over the years, the scope and funding for travel time studies have increased to include many congested corridors in the State. The previous two year's $(2007,2008)$ project included travel time data collection for all congested corridors in Colorado and established baseline corridor conditions. This year's (2009) project builds upon last years results by collecting travel time data for all 71 previous corridors as well as the I-70 corridor during the winter season which is the focus of this addendum.

1.3 Purpose of the Project and Anticipated Use of Travel Time Data

The purpose of this project is to collect and analyze travel time and traffic count data to measure the performance of 71 congested corridors in Colorado. Of the 71 corridors, there were 60 commuter and 11 recreational corridors. The corridors studied include 13 interstate segments, 30 US highway segments, and 28 state highway segments representing 845 highway centerline miles. A complete list of the 2009 project corridors and their characteristics are listed in Appendix A.

Travel time data was collected using the floating car method using either Global Positioning System (GPS) or Distance Measuring Instrument (DMI) equipment. Travel time data allows CDOT staff to monitor performance for congested corridors on an annual basis. It also aids in the development of a congestion management system and resource allocation process to address
congestion within the state. Additionally, travel time data can more easily be related to the typical traveler and commuter's driving experience and can more easily garner support from both the traveling public and CDOT decision makers.

1.4 Summary of Corridor Performance Measures

The results of both this study and the 2009 Travel Time Report are presented in several distinct ways that are meant to provide meaningful comparisons not only of a single corridor from one year to the next, but also of one corridor to another independent of length, location, or classification. The following detail the corridor performance measures.

Travel Rate Index Comparisons

Travel Rate Index (TRI) is a corridor measure that indicates how long a peak trip takes in comparison to an off-peak trip. TRI is calculated from the ratio of travel time during the peak period time to off peak period time. A TRI value of 1.2 indicates that a trip during a peak period takes 20 percent longer than the same trip in the off-peak period.

Travel Time Variability Corridor Comparisons

Travel Time Variability (TTV) is a corridor measure that indicates how much variability exists between the highest and lowest travel time runs during the peak periods. A value of 100 percent indicates that a trip can take twice as long as another trip on the same corridor during the same time period. TTV indicates the relative reliability of travel times during the peak period.

Congestion Costs

The methodology employed by this project to calculate high-level congestion costs is simple and consistent. It is based on broad assumptions and does not include trips diverted or postponed due to congestion, costs to general business, commercial trucking and tourism, etc. Using the travel time data collected for each corridor, the average vehicle delay during the day was determined. It was assumed that this average delay would be encountered by the daily traffic traveling the corridor to obtain the average vehicle hours of delay. A vehicle occupancy rate was then used to determine person hours of delay. Unlike last year's project, where a standard vehicle occupancy rate of 1.1 was used, a corridor specific average vehicle occupancy (AVO) rate was used. The corridor specific AVO numbers were taken from the 2008 CDOT Average Vehicle Occupancy Study completed in July, 2008. It should be noted that AVO numbers provided by this study were derived from data collected during the week and do not include weekend data. For the I-70 winter study only, a weekend winter peak AVO value of 2.4 was used. This value is based on the I-70 Ridership Survey by JF Sato, October 2008. In order to determine the congestion costs, the project used a value of person time of $\$ 16.00$ per hour as reported by the Texas Transportation Institute (TTI) June 2008 report.

Similar to last year's travel time study, congestion and delay were measured using travel times from several travel time runs through the various corridors using the floating car methodology. Delay for the average day was obtained from the difference between a calculated travel time using posted speed limits and the observed average travel times. An annual congestion cost was
then obtained from the average daily delay. This study does not predict future congestion but rather attempts to create a good base travel time and associated delay that can then be used to track differences between modeled versus actual data. In CDOT's 2035 Statewide Transportation Plan, congestion was modeled using all 2005 congested roads and applying a travel time formula to get a congestion time for the average commuter traveling these corridors in 2035. A similar calculation was used to obtain delay averages in minutes per person for 2035 using expected congestion levels for the same group of segments used to calculate 2035 delays. Because of the differences in actual versus modeled data, methodologies and associated assumptions used, there are differences in the congestion totals from this comprehensive travel time study versus the 2035 Statewide Transportation Plan.

1.5 Purpose of the I-70 Winter Report

For the 2009 CDOT Travel Time Project, travel times were collected for the Interstate 70 corridor between C-470 in Golden and SH 9 in Silverthorne during the 2009-10 winter season. This additional data collection was intended to collect and detail travel time characteristics during the winter season. This report summarizes the difference between summer and winter travel patterns and presents the finding of the data collection along this important stretch of I-70.

1.6 Two Year Comparison: I-70 corridor during winter and summer seasons.

- Winter Season
o In 2009/10 winter ADT increased 16% in comparison with 2008/09 winter.
o Annual Congestion Cost increased 1.5 times from $\$ 95$ million to $\$ 145$ million.
o Average Travel Time for Eastbound direction increased by 23\%.
o Average Travel Time for Westbound direction decreased by 4%.
- Summer Season
o In 2009 summer ADT stayed about the same as in summer 2008.
o Annual Congestion Cost, as a result of increase in Annual Vehicle Hours of Delay, almost doubled from $\$ 26$ million to $\$ 51$ million.
o Average Travel Time for Eastbound direction increased by 22\%.
o Average Travel Time for Westbound direction increased by 10%.
From the above summary of data:
- Annual Congestion Cost increased in 2009 in comparison to 2008 for I-70 corridor in both winter and summer seasons.
- Average Travel Time in Eastbound direction increased in both summer and winter seasons.

Section 2: Analysis and Results

2.1 Traffic Volumes

Unlike summer recreational season traffic patterns, winter season patterns tend to be highly directional (westbound in the morning/eastbound in the evening) and Saturday and Sunday patterns tend to mirror each other. This differs from summer traffic patterns that have predominately heavier westbound flows on Saturday and heavier eastbound flows on Sunday. Additionally, the timeframes for the peak hours of traffic flow tend to vary considerably for the two different seasons. Figures 1 and 2 illustrate this difference.

Figure 1 below shows the difference in westbound peak travel times for winter and summer seasons. As can be seen, the winter peak is not only earlier in the day, but is much more pronounced and of shorter duration in comparison to the summer peak. The hourly volume in the figure below is the average of:

- Friday, Saturday and Sunday for summer corridor.
- Saturday and Sunday for winter corridor.

Figure 1. Westbound Average Daily Volumes on I-70 at US 40/Empire for 2008

Figure 2 below illustrates the difference in eastbound peak travel times for winter and summer seasons. As can be seen, the winter peak tends to occur a little later in the day and is much more pronounced and of shorter duration in comparison to the summer peak. The hourly volume in the figure below is the average of:

- Friday, Saturday and Sunday for summer corridor.
- Saturday and Sunday for winter corridor.

Figure 2. Eastbound Average Daily Volumes on I-70 at US 40/Empire for 2008

2.2 Data Collection Periods

Due to these differences between summer and winter season traffic patterns, it was decided that winter season data collection timeframes should vary from summer data collected on this corridor.

Winter data collection time frames were as follows:

- Saturday Peaks

Westbound 7-11 AM
Eastbound 4-7 PM

- Sunday Peaks

Westbound 7-11 AM
Eastbound 4-7 PM

- Off-Peak Periods

Saturday \& Sunday
(westbound \& eastbound)
11 AM to 4 PM

Summer data collection time frames were as follows:

- Saturday Peaks

Westbound and Eastbound 11:30 AM - 5:30 PM

- Sunday Peaks

Westbound and Eastbound 11:30 AM - 5:30 PM

- Off-Peak Periods

Saturday \& Sunday
(Westbound \& Eastbound)
9:30 AM - 11:30 AM and 5:30 PM - 7:30 PM

2.3 Travel Time Characteristics

Travel times were collected over the course of several weekends between January $2^{\text {nd }}$ and January $24^{\text {th }}$, 2010. During the collection of this data it should be noted that no inclement weather (snowstorms) was encountered, as it would have increased travel times and delay. The following figures graphically illustrate the locations and varying degrees of congestion through v / c ratios and posted versus actual travel speeds.

Figure 3 displays the volume to capacity (v/c) ratio for the I-70 corridor. Volume to capacity is a simple ratio of the demand in traffic volume to the available capacity of the roadway that serves that demand. The closer that this ratio approaches 1, is an indication that all available roadway

capacity is being utilized. As can be seen on the figure, areas shaded in red operate at times with a v/c ratio over . 85.

Figure 3. I-70 Mountain Corridor v/c Ratios
It can be seen in Figure 3 that the stretch of I-70 between Floyd Hill and west of Idaho Springs operates at times at a v/c ratio over .85 . This area is typical of where increased travel times and delay are encountered in both directions between Denver and Silverthorne. However, if one was only to look at this v/c ratio figure, it might be incorrectly assumed that there are no other capacity issues along the corridor, and therefore no other areas of congestion and delay.

Figure 4 below illustrates posted speed limits along the I-70 corridor. 65 miles per hour (mph) is the most common speed limit followed by 55, 60, and 50 mph .

Figure 4. Posted Speed Limits Along I-70
Figures 5 and 6 are graphical display of average travel speeds as determined by this study along I-70 for both Saturday and Sundays. Westbound average travel speeds are noted above the I-70 corridor and eastbound speeds are noted below I-70. In comparing these speeds versus Figure 4 one can easily assess which stretches of I-70 have actual travel speeds much lower than posted speed limits. Not so apparent in Figure 3, but shown in Figures 5 and 6 are other areas where average speeds are much lower than posted speed limits and congestion and delay are encountered. Westbound these areas include between US 40 and Georgetown and between Silver Plume and the Eisenhower Tunnel. Eastbound these areas include between Silverthorne and the Eisenhower Tunnel, between Georgetown and US 40, and approaching C-470.

Figure 5. Saturday Peak Average Travel Speeds

Addendum to the 2009 CDOT Travel Time Study Report

Figure 7 below shows the average travel time by direction for the Saturday and Sunday peak periods and the average combined travel time for Saturday and Sunday off-peak periods.

Figure 7. Comparison of EB and WB Winter Average Travel Times for I-70

In addition to the above notes made comparing the speed figures to the v/c ratio figure, the following highlights were derived from the travel time data collected and ensuing analysis.

- Sunday evening peak eastbound travel times (4-7pm) averaged the longest time (125 minutes) and also incurred the most delay.
- \quad Saturday evening peak eastbound travel times (4-7pm) averaged the second longest (76.3 minutes) times and delays.
- Saturday morning peak westbound travel times (7-11am) averaged the third longest times (75.9 minutes) and delays.
- Westbound delay incurred by inbound ski-traffic tends to occur between Floyd Hill and the US 40 Empire exit.
- Eastbound delay incurred by returning ski traffic tends to occur leading up to the Eisenhower Tunnel and between Georgetown and Idaho Springs.

2.4 Corridor Performance Measures

Similar to the 71 corridors that data was collected for the 2009 Travel Time Report, a full corridor report detailing travel times for all periods sampled as well as performance measures derived from the data collected was developed for the I-70 winter data collection. For all corridor performance and congestion measures please see the I-70 Winter Corridor summary included at the end of this report.

Section 3: Conclusion

Without question the I-70 corridor is a hot topic discussion item when one talks about travel time, congestion, delays and monetary impacts to both business and recreational opportunities as a result of congestion and delay. While this supplemental data does not provide an answer to all these issues, it is hoped that the data collected will assist CDOT in evaluating the performance of the corridor during the winter season, and to take an informed approach in solving some the issues that are better quantified through the collection of travel time data.

No.	Corridor	Limits	$\begin{gathered} \text { Urbanl } \\ \text { Recreational } \\ \text { Corridor } \end{gathered}$	CDOT Region	Mileage	$\begin{array}{\|c\|} \begin{array}{c} \text { Number of } \\ \text { Hourly Count } \\ \text { Locations } \end{array} \\ \hline \end{array}$	\# of Runs per direction per period	Facility	Year	Traffic Count Per Day	TRI -AM/SATNB or EB	$\begin{array}{\|c\|} \text { TRI - } \\ \text { AMISAT-SB } \\ \text { or WB } \end{array}$	TRI -PMISUNNB or EB	$\begin{array}{\|c\|} \text { TRI- } \\ \text { PMISUN-SB } \\ \text { or WB } \end{array}$	$\begin{gathered} \text { Annual Hours of } \\ \text { Delay } \end{gathered}$	Annual Person Hours of Delay	Annual Congestion Costs
1	1-25	Lincoln Ave. to Broadway	u	6	14.0	3	8	1	2007	142,400	1.23	1.14	1.44	1.19	2,351,100	2,586,200	\$40,086,700
									2008	169,600	1.24	1.29	1.77	1.39	2,222,700	2,600,500	\$41,608,300
									2009	153,200	1.43	1.09	1.46	1.40	2,193,400	2,566,300	\$41,061,200
2	1-25	Broadway to US 36	u	6	11.3	3	8	1	2007	204,900	0.86	1.22	2.11	1.42	4,158,300	4,574,200	\$70,899,700
									2008	211,500	0.99	1.60	1.59	1.18	4,084,000	4,778,200	\$76,451,800
									2009	218,600	0.89	1.29	1.73	1.83	5,232,400	6,121,900	\$97,950,000
3	1-25	Lincoln Ave. to Meadows Pkwy.	u	1,6	8.7	1	8	1	2007	95,900	1.25	1.01	1.19	1.35	475,500	523,100	\$8,108,000
									2008	102,300	1.15	1.00	1.02	1.17	243,700	304,600	\$4,873,200
									2009	97,300	1.22 1.09	1.03	1.03 1.10	1.07	158,400 838.900	198,000 922800	\$3,168,200
4	1-25	S. Academy Blvd. to N. Gate Rd.	u	2	20.3	3	8	1	2008	82,400	1.00	1.08	1.30	1.02	684,800	869,600	\$13,914,100
									2009	87,400	1.03	1.06	1.18	1.06	297,300	377,500	\$6,040,500
5	1-25	US 36 to SH 14	u	4,6	52.3	3	8	1	2007	95,400	1.03	1.06	1.11	1.06	1,065,600	1,172,100	\$18,167,500
									2008	100,900	$\frac{1.02}{1.10}$	1.10	1.10	1.08	1,108,300	1,407,500	\$22,519,900
6	1-70	C-470 to l-25	u	6	13.1	3	8	1	2007	120,700	1.03	1.01	1.35	1.12	6991,000	760,100	\$11,780,900
									2008	119,000	1.10	1.05	1.09	1.21	608,400	711,800	\$11,389,500
									2009	114,100	1.04	1.06	1.03	1.08	698,800	817,700	\$13,082,400
7	$1-70$	$1-25$ to Pena Blvd.	u	6	10.3	3	8	1	2007	149,800	1.13	1.13	1.76	2.18	2,683,000	2,951,300	\$45,745,700
									2008	130,300	1.26 1.07	1.00 0.92	1.34 1.23	1.27	$\frac{1,090,000}{2,696,200}$	$\frac{1,275,300}{3,154,500}$	\$20,404,400
8	$1-70$	SH 9 to C-470	R	1,6	55.6	3	8	1	2007	60,700	1.06	1.06	1.55	1.08	1,223,500	1,345,900	\$20,860,900
									2008	57,400	1.03	1.10	1.48	1.07	1,195,100	1,601,400	\$25,622,000
									2009	57,200	1.03	1.09	1.87	1.06	2,364,300	3,168,200	\$50,691,300
9	1-70	Edwards to Vail East Exit	R	3	17.0	3	8	1	2008	37,000	1.04 1.08	1.04	1.08 1.03	1.07 1.03	74,900	82,400 51,300	$\frac{\$ 1,276,400}{\$ 820,000}$
									2009	41,300	1.02	1.02	1.01	1.01	42,500	57,400	\$918,700
10	1-70	Rifle to No Name Interchange	R	3	27.8	3	8	1	2007	24,400	1.01	1.02	1.01	1.01	22	24	$\$ 400$
									2008	$\frac{26,100}{24,500}$	1.06 1.09	1.07	$\frac{1.06}{1.06}$	1.07	46,200	64,300	\$1,028,200
11	1-76	$1-25$ to -70	u	6	5.1	3	8	1	2007	71,000	1.06	1.10	1.09	1.03	136,700	150,400	\$2,330,900
									2008	89,200	0.96	1.05	1.29	1.04	109,600	128,200	\$2,051,200
									2009	79,500	1.05	1.25	1.06	1.04	75,300	88,100	\$1,409,600
12	1-225	$1-70$ to l-25	u	6	12.0	3	8	1	2007	120,600	1.26	1.62	1.40	1.31	2,720,400	2,992,400	\$46,382,900
									2008	118,800	1.28	1.65	1.32	1.40	1,883,400	2,203,500	\$35,256,300
									2009	123,300	1.19	1.47	1.46	1.28	2,742,700	3,209,000	\$51,343,400
13	1-270	${ }^{1-70}$ to 1-76	u	6	5.0	3	8	1	2007	87,000	1.56	0.72	1.36	1.94	1,040,900	1,145,000	\$17,747,800
									2008	100,400	1.34	0.85	1.18	1.99	987,300	1,155,100	\$18,482,200
									2009	99,800	1.34	1.08	1.09	1.86	1,009,600	$\frac{1,181,300}{450,500}$	\$18,900,500
14	US 6	$1-70$ to l-25	u	6	8.9	3	8	us	2008	88,300	1.52	1.03	1.24	1.08	603,100	723,700	\$11,579,700
									2009	87,400	1.45	1.03	1.03	1.15	357,900	429,500	\$6,872,100
15	US 6-North Ave.	1st St. to I-70 Business	u	3	4.1	1	8	us	2007	26,400	1.00	0.92	1.17	1.40	224,200	246,600	\$3,822,500
									2008	25,000	0.96 1.13	0.95	1.26	1.16	155,900 171400	215,200 236500	$\$ 3,442,700$ $\$ 3784500$
16		56th Ave. to 77th Ave.							2009	24,200	$\frac{1.13}{0.99}$	1.03 1.88	1.16	1.14	171,400	236,500	$\$ 3,784,500$ $\$ 7,257,000$
	US 6 -Vasquez Blva.		u	6	2.9	1	8	us	2008	27,800	1.14	1.33	2.14	1.19	253,500	322,000	\$5,151,400
									2009	2, 5,500	1.04	1.35	1.71	1.36	372,900	473,600	\$7,578,100
17	US 6/SH 119	SH 93 to Gregory St.	R	1	19.1	3	8	US/SH	2007	14,300	1.01	0.97	1.04	0.97	52,600	57,800	\$896,400
									2008	14,200	1.04	1.05	1.04	1.04	70,900	96,400	\$1,542,000
									2009	16,500	1.05	1.04	1.14	1.06	151,100	205,400	\$3,287,100
18	US 24	SH 67 to l-25							2007	26,200	1.06	1.07	1.06	1.08	490,100	539,100	\$8,355,700
			u	2	25.0	3	8	us	2008	25,700	1.00	1.06	1.11	1.07	345,000	458,800	\$7,341,100
									2009	25,800	1.04	1.04	1.08	1.05	468,100	622,500	\$9,960,300
									2007	31,500	1.02	1.08	1.17	1.19	647,700	713,500	\$11,043,700
19	US 34	US 287 to US 85	u	4	21.2	3	8	us	2008	34,700	1.13 1.02	1.15 1.00	1.18	1.18	789,100 633,200	$1,002,200$ 804,200	\$16,034,800
									2007	9,200	1.04	1.09	1.06	1.06	22,500	24,700	\$383,200
20	US 34	CR 63 to CR 43	R	4	7.4	3	8	us	2008	9,100	1.03	1.07	1.03	1.07	17,700	19,700	\$314,800
									2009	8,700	1.04	1.06	1.07	1.04	27,000	30,000	\$479,400
									2007	41,500	1.20	1.27	1.45	1.18	374,700	412,200	\$6,389,400
21	US 36	Canyon Blvd. to SH 157	u	4	2.9	3	8	us	2008	44,300	1.13	1.24	1.15	1.26	330,000	429,000	\$6,863,900
									2009	47,200	1.02 1.04	$\frac{1.23}{1.32}$	1.27 1.30	1.24 1.01	527,100	6885,200	\$10,963,700
22	US 36	SH 157 to -25	u	4, 6	18.1	3	8	us	2008	78,900	1.11	1.32	1.10	1.03	352,000	4332,900	\$6,927,000
									2009	80,800	1.28	1.35	1.11	1.00	677,300	833,000	\$13,328,700
									2007	20,100	0.98	1.06	1.12	1.09	431,000	474,100	\$7,348,500
23	US 36	SH 66 to Canyon Blva.	u	4	14.8	3	8	us	2008	18,300	0.99	1.09	1.12	1.10	286,100	331,800	\$5,309,500
									2009	17,500	1.05	1.05	1.13	1.10	293,700	340,700	\$5,451,000
24	US 40	CR 129 to Pine Grove Rd.	R	3	3.3	1	8	us	2007	24,200	1.14 1.14	1.19 1.20	1.06 1.11	1.13 1.09	126,700	139,300 133,600	\$2,159,600
									2009	16,800	1.11	1.12	1.10	1.08	70,400	97,200	\$1,555,300
									2007	11,400	1.05	1.04	1.09	1.23	137,700	151,500	\$2,347,700
25	US 40	CR 8/5 to -70	R	1,3	31.1	3	8	us	2008	12,200	1.07	1.10	1.19	1.03	118,900	160,400	\$2,567,200
									2009	12,500	1.05	1.02	1.03	1.08	154,200	208,200	$\$ 3,331,400$ $\$ 3,229100$
26	Us 50	Ute Ave. to 27.00 Rd .	u	3	2.0	1	8	us	2008	22,500	1.06	1.27	1.17	0.99	66,900	92,400	\$8,478,000

No.	Corridor	Limits	Urban/ Recreational Corridor	CDOT Region	Mileage	$\begin{array}{\|c\|} \text { Number of } \\ \text { Hourly Count } \\ \text { Locations } \end{array}$	\# of Runs per direction per period	Facility	Year	Traffic Count Per Day	TRI amisat NB or EB	$\begin{array}{\|c\|} \text { TRI - } \\ \text { AM/SAT-SB } \\ \text { or WB } \end{array}$	TRI PMISUN. NB or EB	$\begin{array}{\|c} \text { TRI - } \\ \text { PMISUN- SB } \\ \text { or WB } \end{array}$	$\begin{gathered} \text { Annual Hours of } \\ \text { Delay } \end{gathered}$	Annual Person Hours of Delay	Annual Congestion Costs
	US 50		U	2	4.0			us	2009	21,500	1.07	1.26	1.09	1.19	86,600	119,500	\$1,911,700
27		Purcell Blva. to Fortino Blvd.				1	8		2007	40,100	1.12	1.20	1.21	1.29	275,700	303,300	\$4,700,600
									2008	40,500	1.23	1.14	1.22	1.23	127,600	164,600	\$2,632,500
									2009	40,600	1.09	1.06	1.29	1.18	182,300	235,200	\$3,762,600
28	US 50	SH 141 to 27.00 Rd .	U	3	4.6	3	8	us	2007	15,900	1.13 1.06	1.14	1.06 1.10	1.07	43,300 45,200	47,600 62,400	$\xrightarrow{\$ 738,200}$
									2009	15,500	1.06	1.13	1.07	1.10	83,000	114,500	\$1,832,000
29	US 85	1-76 to US 34	u	4,6	38.8	3	8	us	2007	26,100	1.06	1.05	1.07	1.05	800,600	880,700	\$13,650,500
									2008	25,800	1.03	1.04	1.10	1.06	592,400	687,300	\$10,996,800
									2009	23,700	1.05	1.05	1.07	1.11	667,400	774,200	\$12,386,800
30	US $85-$ Santa Fe Dr.	Highlands Ranch Pkwy. to SH 40	u	1, 6	14.8	3	8	us	2007	21,500	1.31	1.03	1.17	1.27	660,100	726,100	\$11,255,200
									2008	38,500	1.13	1.06	1.22	1.27	1,229,500	1,475,400	\$23,606,300
31	US 85	Meadows Pkwy. to Highlands Ranch Pkwy.	u	1	13.4	3	8	us	2007	50,900	1.04	1.06	1.03	1.10	$\xrightarrow{1,408,600}$	$\xrightarrow{1,692,300}$	\$ $\$ 4,220,000$
									2008	19,700	1.06	1.07	1.07	1.13	122,700	155,800	\$2,493,100
									2009	19,200	1.05	1.09	1.05	1.14	122,000	154,900	\$2,478,900
32	US 160	CR 2301 to CR 25	u	5	2.4	1	8	us	2008	10,900	1.12	1.05 1.07	1.25 1.29	1.11	47,700	52,500	\$813,200
									2009	13,100	1.12	1.06	1.17	1.33	67,500	83,700	\$1,338,500
33	US 160	CR 207 to US 550 South	u	5	7.7	3	8	us	2007	23,900	1.10	1.11	1.15	1.22	229,900	252,900	\$3,920,400
									2008	21,900	1.11	1.06	1.08	1.21	344,400	454,700	\$7,274,500
									2009	21,700	1.24	1.06	1.10	1.17	391,900	517,400	\$8,277,700
34	US 160	US 550 to US 160 Business	u	5	15.2	3	8	us	2008	16,100	1.09 1.09	1.08	1.08 1.04	1.08	204,800	225,300	\$3,491,600
									2009	15,200	1.03	1.31	1.06	1.01	287,600	362,300	\$5,797,400
35	US 285-Hampden Ave.	US 85 to l-25	U	6	4.6	1	8	us	2007	55,200	1.49	1.15	1.45	1.41	1,202,300	1,322,500	\$20,498,400
									2008	62,100	1.17	1.05	1.15	1.38	1,484,400	1,632,900	\$25,309,600
									2009	60,000 67600	1.38 1.34	1.22 1.07	1.20 1.07	1.35	$1,363,600$ 196700	$\begin{array}{r}1,499,900 \\ \hline 216300\end{array}$	$\$ 23,249,100$ $\$ 3,35300$
36	US 285-Hampden Ave.	SH 121 to US 85	u	6	4.5	1	8	us	2008	36,300	1.20	1.07	1.18	1.45	152,500	183,000	\$2,927,900
									2009	71,500	1.47	1.07	1.05	1.37	571,800	686,200	\$10,978,700
37	US 287	Drake Rd. to Mulberry St.	u	4	2.0	1	8	us	2007	38,900	1.03	1.16	1.38	1.53	432,800	476,100	\$7,379,400
									2008	43,000	0.97	1.25	1.38	1.76	527,500	685,800	\$10,972,400
									2009	46,900	1.01	1.07	1.12	1.67	566,400	736,300	\$11,780,500
38	US 287	US 36 to Nickel St.	u	4, 6	9.6	3	8	us	2007	38,300	1.09	1.17	1.24	1.36	1,026,400	1,129,000	\$17,500,600
									2008	29,700	1.05	1.14	1.21	1.22	643,800	817,700	\$13,082,700
									2009	30,500	1.07	1.11	1.39	1.24	736,000	934,700	\$14,955,000
39	US 287	Midway Blvd. to US 34	u	4, 6					2007	29,800	1.04	1.03	1.15	1.12	1,203,400	1,323,700	\$20,517,300
					35.2	3	8	us	2008	30,900	1.05	1.03	1.14	1.14	1,393,300	1,699,800	\$27,196,300
									2009	31,200	0.99	0.99	1.13	1.13	1,407,200	1,716,800	\$27,468,100
40	US 287-Federal Blva.	US 40 to US 36	u	6	6.8		8	us	2007	34,100	1.04	1.09	1.36	1.22	858,600	944,500	\$14,639,700
						3			2008	34,400	1.08	1.13	1.28	1.22	489,200	621,300	\$9,941,300
									2009	35,500	1.11	1.27	1.29	1.23 1.38	767,800 445,500	975,100	\$15,602,300
41	US 550	US 160 North to 25th St.	u	5	1.7	1	8	us	2008	33,100	1.10	1.31	1.55	1.22	254,200	340,700	\$5,450,800
									2009	31,200	1.04	1.17	1.38	1.57	246,000	329,600	\$5,273,400
42	US 550	CR 220 to US 160 South	u	5	0.8	1	8	us	2007	9,700	1.36	1.23	1.09	1.03	47,700	52,400	\$812,500
									2008	9,000	1.62	1.09	1.37	1.06	24,100	29,900	\$478,600
43	US 550	CR 203A to CR 250	u	5					2009	8,100	1.12 1.06	1.11 1.05	1.09 1.06	1.05 1.07	18,600	23,100	\$369,200
					9.9	3	8	us	2008	10,000	1.06	1.07	1.28	1.06	14,900	18,900	\$302,300
									2009	9,700	1.06	1.04	1.06	1.07	7,900	10,000	\$159,600
44	C-470	SH 121 to l-70							2007	64,000	1.01	1.04	1.00	0.96	257,000	282,700	\$4,382,000
			u	6	13.9	3	8	SH	2008	71,100	1.01	1.07	1.25	1.04	299,200	359,100	\$5,745,300
									2007	101,900	1.69	1.05	1.00	1.38	919,500	1,011,500	\$15,678,200
45	C-470	SH 121 to --25	u	6	11.5	3	8	SH	2008	92,300	1.76	1.01	1.04	1.15	717,100	860,500	\$13,768,300
									2009	102,300	1.17	0.96	1.12	1.61	1,121,000	1,345,100	\$21,522,400
									2007	41,500	1.02	1.16	1.30	1.17	1,707,300	1,878,000	\$29,109,600
46	SH 2-Colorado Blva.	US 285 to 1-70	u	6	8.8	3	8	SH	2008	45,300	0.99	1.17	1.31	1.21	2,039,100	2,589,700	\$41,435,400
									2009	42,300	0.98	1.16	1.30	1.32	1,999,100	2,538,800	\$40,620,800
									2007	19,500	1.10	1.44	1.15	1.21	70,000	77,000	\$1,193,000
47	SH 2	72nd Ave. to 96th Ave.	u	6	4.0	1	8	SH	2008	14,600	1.12	1.16	1.36	1.13	70,300	89,300	\$1,428,500
									2009	13,500	1.13 1.03	1.10	1.19	1.21 106	80,000	101,500 252000	\$1,624,700
48	SH 7-Arapahoe Rd.	Cherryvale Rd. to US 287	u	4	5.9	3	8	SH	2008	17,700	1.00	1.36	1.40	1.01	257,600	373,500	\$5,975,800
									2009	18,900	1.02	1.21	1.51	1.05	215,600	312,600	\$5,002,000
									2007	21,300	1.04	1.16	1.08	1.00	452,000	497,300	\$7,707,800
49	SH 7-Baseline Rd.	US 287 to - 25	u	6	6.9	3	8	SH	2008	20,100	1.08	1.10	1.24	1.08	398,900	506,600	\$8,105,600
									2007	16,000	1.13	1.25	1.09	1.46	66,400	73,100	\$8,132,400
50	SH 9	1-70 to CR 1900	R	1	2.5	1	8	SH	2008	14,900	1.28	1.07	1.16	1.06	26,000	30,600	\$489,700
									2009	14,600	1.20	1.24	1.21	1.62	41,100	48,500	\$775,400
									2007	24,700	1.10	1.13	1.08	1.04	258,200	284,100	\$4,403,100
51	SH 9	1-70 to Boreas Pass Rd.	R	1	11.1	3	8	SH	2008	19,200	1.07	1.12	1.05	1.08	246,400	315,400	\$5,046,000
									2009	20,700	1.12 1.07	1.22	1.12	1.18	311,600	398,800	\$6,380,700

No.	Corridor	Limits	Urban/ Recreational Corridor	CDOT Region	Mileage	$\begin{gathered} \text { Number of } \\ \text { Hourly Count } \\ \text { Locations } \end{gathered}$	\# of Runs per direction per period	Facility	Year	$\begin{gathered} \text { Traffic } \\ \text { Count Per } \\ \text { Day } \end{gathered}$	TRI-AMISATNB or EB	$\begin{gathered} \text { TRI - } \\ \text { AMISAT-SB } \\ \text { or WB } \end{gathered}$	TRI -PMISUNNB or EB	$\begin{array}{\|c} \text { TRI - } \\ \text { PMISUN- SB } \\ \text { or WB } \end{array}$	Annual Hours of Delay	Annual Person Hours of Delay	Annual Congestion Costs
52	SH 30	$1-25$ to l-225	u	6	10.0	3	8	SH	2008	42,100	1.00	1.15	1.27	1.20	1,621,500	2,059,300	\$32,949,000
									2009	42,100	1.05	1.02	1.28	1.21	1,363,400	1,731,500	\$27,704,600
53	SH 30	1-225 to Hampden Ave.	u	6	9.5	3	8	SH	2007	21,300	1.09	1.12	1.13	1.24	320,700	352,800	\$5,467,800
									2008	21,100	0.94	1.14	1.34	1.14	357,700	468,600	\$7,497,900
									2009	19,900	1.06	1.09	1.20	1.12	300,700	393,900	\$6,303,100
54	SH 45-Pueblo Blvd.	Lehigh St. to SH 96	u	2	1.2	1	8	SH	2007	26,200	1.26	1.20	1.31	1.47	81,600	89,800	\$1,392,100
									2008	27,300	1.53	1.26	1.51	1.45	97,500	124,800	\$1,997,100
									2009	27,500	1.28	1.09	1.38	1.10	75,400	96,600	\$1,545,000
55	SH 82	$1-70$ to Old SH 82	R	3	23.7	3	8	SH	2007	11,400	1.05	1.07	1.03	1.06	477,700	525,500	\$8,144,500
									2008	23,800	1.08	1.11	1.07	1.05	450,900	622,200	\$9,955,300
									2009	23,100	1.08	1.07	1.08	1.09	473,900	653,900	\$10,463,100
56	SH 82	Old SH 82 to West Hallam Ave.	R	3	16.7	3	8	SH	2007	23,900	1.06	1.05	1.05	1.04	155,400	171,000	\$2,649,700
									2008	18,800	1.10	1.11	1.04	1.04	134,100	186,400	\$2,983,000
									2009	19,100	1.07	1.05	1.05	1.04	161,600	224,600	\$3,594,000
57	SH 83-Parker Rd.	1-225 to SH 2	u	6	6.7	3	8	SH	2007	33,700	1.06	1.24	1.38	1.21	949,900	1,044,900	\$16,196,400
									2008	34,000	1.30	1.01	1.44	1.29	1,047,200	1,329,900	\$21,278,900
									2009	41,000	1.12	1.03	1.18	1.43	1,290,100	1,638,400	\$26,214,300
58	SH 83-Parker Rd.	Lincoln Ave. to I-225	U	1, 6	9.6	3	8	SH	2007	59,800	1.23	1.21	1.29	1.26	1,195,200	1,314,800	\$20,374,300
									2008	65,100	1.26	1.16	1.28	1.26	1,377,400	1,639,100	\$26,226,200
59	SH 88-Arapahoe Rd,	$1-25$ to SH 83	u	6	4.5	3	8	SH	2009	67,000	1.13 1.17	1.09 1.28	1.33 1.67	1.21 1.35	$1,740,100$ $1,457,100$	2,070,000 $1,602,900$	\$33,131,900
									2008	57,900	1.09	1.57	1.43	1.17	1,061,400	134,800	\$21,567,400
									2009	56,100	0.92	1.30	1.72	1.18	1,272,700	1,616,400	\$25,861,900
60	SH 88-Belleview	SH 88/Federal to l-25	u	6	6.7	3	8	SH	2007	31,400	1.44	1.08	1.17	1.50	556,000	611,600	\$9,480,100
									2008	34,200	1.22	1.03	1.20	1.47	553,300	702,700	\$11,242,600
									2009	34,900	1.13	1.08	1.10	1.28	568,900	722,500	\$11,560,300
61	SH 88-Federal Blvd.	US 6 to US 285	u	6	5.2	3	8	SH	2007	35,500	1.09	1.05	1.25	1.28	426,600	466,000	\$7,222,500
									2008	31,800	1.02	0.96	1.26	1.52	503,300	639,200	\$10,226,500
									2009	38,000	1.02	1.02	1.18	1.27	601,700	764,200	\$12,227,300
62	SH 93	SH 58/US 6 to US 36	u	4,6	18.3	3	8	SH	2007	19,900	1.10	1.07	1.11	1.06	315,700	347,300	\$5,383,500
									2008	20,000	1.05	1.05	1.08	1.05	289,200	367,200	\$5,875,000
									2009	20,500	1.06	1.07	1.09	1.09	378,100	480,100	\$7,682,000
63	SH 95-Sheridan Blva.	US 285 to l-70	u	6	9.1	3	8	SH	2007	35,700	1.05	1.03	1.21	1.21	564,200	620,600	\$9,619,300
									2008	33,400 35,900	1.01	0.97 1.05	1.23 1.21	1.24 1.30	554,400 711.200	704,000 903,200	\$11,264,100
64	SH 95-Sheridan Blva.	$1-70$ to US 36	u	6	5.3				2007	38,800	1.05 1.05	1.10	1.39	1.12	640,800	704,800	\$10,924,900
						3	8	SH	2008	38,700	1.05	0.99	1.19	1.24	535,800	680,400	\$10,866,300
									2009	41,900	1.01	0.99	1.15	1.26	884,500	1,123,400	\$17,973,600
65	SH 119-Diagonal Hwy.	US 287 to l-25	u	4	6.8	3	8	SH	2007	33,400	1.21	1.60	1.06	1.27	371,500	408,600	\$6,333,300
									2008	26,200	1.28	1.23	1.12	1.23	272,900	332,900	\$5,325,000
									2009	34,100	1.11	1.25	1.16	1.10	558,600	681,400	\$10,903,000
66	SH 119	Sugarloaf Rd. to Broadway St.	u	4	5.3	1		SH	2007	8,100	1.08	1.08	1.22	1.07	62,000	68,200	\$1,057,300
							8		2008	7,900	1.07	1.08	1.32	1.08	48,400	76,900	\$1,229,300
									2009	9,200	1.08	1.08	1.17	1.07	61,400	97,600	\$1,560,800
67	SH 119-Diagonal Hwy.	US 36 to US 287	u	4	12.0	3	8	SH	2007	32,900	1.07	1.20	1.23	1.19	656,700	722,400	\$11,196,800
									2008	34,800 3	1.03	1.17	1.41	1.16	$\begin{array}{r}746,900 \\ \hline 889\end{array}$	963,500 760	\$15,415,900
									2009	33,700	1.08	1.13	1.20	1.17	589,700	760,700	\$12,171,700
68	SH 121-Wadsworth Blva.	US 40/Colfax to US 36	u	6	12.9	3	8	SH	2008	40,300	1.06	0.98	1.27	1.23	1, 1,647,300	$\xrightarrow{2,1292,100}$	\$33,473,000
									2009	40,800	1.08	1.09	1.19	1.27	1,967,500	2,498,800	\$39,980,600
69	SH 121-Wadsworth Blvd.	C-470 to US 40/Colfax	u	6	13.2	3	8	SH	2007	39,800	1.08	1.02	1.16	1.28	1,031,700	1,134,900	\$17,591,000
									2008	37,800	1.02	1.06	1.24	1.25	852,500	1,065,600	\$17,049,300
70									2009	40,300	1.04 1.29	0.99 1.10	1.17	$\frac{1.25}{1.25}$	$\frac{1,023,900}{633,800}$	$\frac{1,279,900}{697,200}$	\$20,478,400
	SH 177-S. University Blva.	C-470/Lincoln to l-25	u	6	8.6	3	8	SH	2008	28,700	1.28	1.14	1.24	1.23	844,400	1,072,500	\$17,159,200
									2009	33,900	1.20	1.04	1.05	1.25	960,400	1,219,700	\$19,514,800
									2007	15,900	1.15	1.07	1.19	1.01	107,500	118,200	\$1,832,700
71	SH 340	203/4 Rd. to -70 Business	u	3	5.7	3	8	SH	2008	12,800	1.19	1.12	1.20	1.06	63,900	88,800	\$1,421,100
									2009	13,800	1.15	1.10	1.07	1.01	68,400	95,000	\$1,520,200
													Total	2007	47,226,922	51,948,724	\$805,167,100
														2008 2009	$\begin{array}{r} 42,616,300 \\ 51,768,500 \\ \hline \end{array}$	$\begin{array}{r} 51,412,900 \\ 63,899,200 \\ \hline \end{array}$	$\begin{gathered} \$ 841,173,700 \\ \$ 1,021,639,500 \\ \hline \end{gathered}$

