

Field experiments were conducted in 1981 at five locations and in 1982 at four locations to determine variations among fertilizer recommendations of several soil testing laboratories operating within Colorado. A bulk composite soil sample was collected from each location prior to initiation of the study. This bulk soil sample was thoroughly mixed and subdivided into enough subsamples to send one to each laboratory in the study along with the same production information for each location.

Significant variation existed among fertilizer recommendations. The cost of recommended fertilizer varied by as much as 100 percent, yet yields from all recommendations did not differ significantly at any location.

Introduction

A large selection of soil test laboratory services are available to Colorado farmers. These services are provided by independent commercial laboratories and by the Colorado State University Soil Testing Laboratory. It is estimated that independent commercial laboratories test 80 percent

Soil test recommendation studies

R. H. Follett, D. G. Westfall, T. J. Doherty, E. E. Rothman, E. J. Langin and H. M. Golis no. .511

of the soil samples in Colorado each year.

The objective of these experiments was to compare, under controlled conditions, university recommendations with other laboratories to determine if university fertilizer recommendations are adequate to produce optimum economic yields. A second objective was to determine if the variability in recommendations results in different yields and to determine each recommendation's cost and its relationship to yield.

Methods

Soil samples were taken to plow depth from each experimental area. These samples were thoroughly mixed, dried and divided into four to six subsamples. Each subsample was sent to four to six preselected laboratories operating within the test area. The samples were not identified as CSU research material. Each laboratory was asked to make fertilizer recommendations for the yield goal and crop specified. Corn was the test crop at all locations.

The experimental design was a randomized complete block with four replications. The fertilizer recommendation from each laboratory served as a treatment with fertilizer being weighed out for each plot. All nutrients suggested by the laboratory were assumed to be needed and were applied. All fertilizers were broadcast and incorporated prior to planting. Seedbed preparation, planting, weed control and other cultural practices are those used by the cooperator on the rest of the field. Harvesting was accomplished by a small plot combine, and plot weights and grain moisture were taken at harvest. The yield results are reported in bushels per acre.

Fertilizer cost was based upon local fertilizer prices for spring, 1981 and 1982. Colorado State University is the only soil testing laboratory identified specifically in this report. All others are identified by letters only.

1/R. H. Follett, CSU professor; D. G. Westfall, CSU professor; T. J. Doherty, CSU extension agent; E. E. Rothman, CSU extension agent; E. J. Langin, CSU extension agent; H. M. Golis, CSU assistant professor, all department of agronomy (9/1/84)

Issued in furtherance of Cooperative Extension work in agriculture and home economics, Acts of May 8 and To simplify technical terminology, trade names of June 30, 1914, in cooperation with the United States Department of Agriculture, Don K. Chadwick, acting products and equipment occasionally will be used. director of Extension Service, Colorado State University, Fort Collins, Colorado 80523. The CSU Cooperative No endorsement of products named is intended Extension Service is dedicated to serve all people on an equal and nondiscriminatory basis.

nor is criticism implied of products not mentioned.

Results and Discussion

Comparative soil test recommendations were conducted at five different locations in 1981 and are presented in Tables 1 to 5. The actual fertilizer recommendation, fertilizer costs and resulting yields are given in the tables for each location. Statistical analysis of the yield results indicated no significant difference in yield for any of the locations.

The comparative soil test recommendations for 1982 are presented in Tables 6, 8, 9 and 10. For two locations (Fort Collins and Greeley), the soil test results are presented in Table 7. In comparing soil test results, it is important to keep in mind that chemical procedure differences may exist that would make comparisons of some tests not possible with the given information. However, the soil test interpretations as reflected in fertilizer recommendations can be compared.

The results indicated that suggested fertilizer recommendations made by laboratories on a given field can vary considerably. Farmers must be aware of this variability and evaluate suggested fertilizer recommendations in relation to fertilizer research results and their experience for the area. If the recommendations appear unusual for the area, it would be wise to evaluate their use on a limited area before investing heavily in fertilizer for the entire field.

¹Yields were not statistically significantly different at any location. The recommendation given by each laboratory produced the same yield, regardless of fertilizer cost. These results indicated that the recommendations from the CSU Soil Testing Laboratory resulted in the lowest fertilizer costs at the nine locations in this report.

Reliable fertilizer recommendations are the result of soil test calibrations developed from extensive field and greenhouse research. In order to interpret a soil test value, it is necessary to correlate the test value with known field response for various crops. In all soil testing programs, tables are prepared or computer programs written, showing soil test results and suggested fertilizer use for various crops. Soil testing laboratories must have access to both local and regional soil test-crop response correlation research in order to develop economical fertilizer recommendations.

Nutrient	Laboratory recommendations—lbs/ A^1							
	CSU	В	С	D	Check			
Nitrogen, N	30	200	150	180				
Phosphorus, P ₂ O ₅	50	120	90	40	unitarity.			
Potassium, K Ö	2569,553	55	30	-00.000.000	40404Kir			
Sulfur, S		8	30		104549794			
Magnesium, Mg	-	10		WIGHTON				
Zinc, Zn	10	8	14.5	8	-			
Manganese, Mn	and and a second se	2		-	-			
Boron, B		0.5		1				
Fertilizer cost, \$	29.93	106.51	80.98	64.83	0			
Yield ² bu/A	164	172	177	175	177			

Table 1: Comparative soil test recommendations on irrigated corn at the Fort Collins location-1981.

¹Recommendations were made for a yield goal of 175 bu/A ²Yield difference not significant, LSD (0.5) = N.S.

Table 2: Comparative soil test recommendations on irrigated corn at the Greeley location-1981.

		Laboratory recommendation—lbs/A ¹							
Nutrient	CSU	В	С	D	E				
Nitrogen, N	70	200	174	170	150				
Potassium, K O	about the second se	80	30	40					
Potassium, K ₂ O Sulfur, S	and a second	3.3		10	5				
Boron, B	suscence -	0.5		extracts					
Fertilizer cost, \$	16.97	58.10	46.18	52.86	36.37				
Yield ² bu/A	184	175	171	162	173				

¹Recommendations were for a yield goal of 175 bu/A ²Yield difference not significant, LSD (0.5) = N.S.

Table 3: Comparative soil test recommendations on irrigated corn at the Delta location-1981.

VUS C . 2

Laboratory recommendation-lbs/A1 Nutrient CSU \mathbf{C} I J Κ L Nitrogen, N 175175 140 150 210 220 Phosphorus, P₂O₅ 60 30 5020 40 Potassium, K_QÕ 30 40 120 130 -----Zinc. Zn 2.5-----------_____ Iron, Fe 5 -------------Fertilizer cost, \$ 52.64 43.42 61.73 48.9373.93 79.11 Yield² bu/A 194 181 175188 192 184

¹Recommendations were for a yield goal of 175 bu/A

²Yield difference not significant, LSD (.05) = N.S.

Table 4: Comparative soil test recommendations on irrigated corn at the Fruita location-1981.

	Laboratory recommendations-lbs/A ¹							
Nutrient	CSU	C	Ι	J	K	L		
Nitrogen, N	135	220	100	160	260	240		
Phosphorus, P ₂ O ₅	30	100	60	90	120	210		
Potassium, K Ő	with same	55		wawaan	225	140		
Sulfur, S	00000		50	6404968	watcher			
Zinc, Zn		- any spectrum	2.5		-	-		
Iron, Fe	054800	NUMBER OF T	0.5	we we will not a set of the set o	antesiantia	-		
Boron, B		1	system:			1		
Fertilizer cost, \$	36.02	86.97	63.10	61.64	123.33	138.14		
Yield ² bu/A	157	176	169	169	176	166		

¹Recommendations were for a yield goal of 150 bu/A ²Yield difference not significant, LSD (.05) = N.S.

Table 5: Comparative soil test recommendations on irrigated corn at the Prowers County location-1981.

Nutrient	Laboratory recommendations—lbs/A ¹							
	CSU	В	С	D	F	Н		
Nitrogen, N		125	120	110	mpinish	160		
Phosphorus, P ₀ O	Coloradory -	25	30			unipelisie		
Phosphorus, P ₂ O ₅ Potassium, K ₂ O		20	30	-		ngitikanices		
Zinc, Zn	No. of the second s			3	00000000			
Fertilizer cost, \$	0	39.24	40.62	29.67	0	38.80		
Yield ² bu/A	209	207	203	198	193	184		

¹Recommendations were for a yield goal of 175 bu/A ²Yield difference not significant, LSD (.05) = N.S.

Table 6: Comparative soil test recommendations on irrigated corn at the Fort Collins location-1982.

Nutrient		Laboratory recommendation—lbs/A ¹									
	CSU	В	C	D	Е	F	Check				
Nitrogen, N	170	220	225	180	150	255	CHORDERD				
Phosphorus, P ₂ O ₅	50	105	100	110	90	145 🔩	wantpin				
Potassium, K _s Õ		65	40	60	50	35					
Sulfur, S	ADDRESS OF	3.3		20	100	[~] 16	000000				
Zinc, Zn	10	9	sizanium	8	5	3					
Manganese, Mn		2		3	-	4	*00000				
Copper, Cu	systemistics	eurositie	windowenie -	0.5		xextrone	Man De Carlos				
Iron, Fe	workers.	-004047072		SCALES OF		3	60045				
Boron, B				1		1					
Fertilizer cost, \$	63.60	104.21	86.26	102.79	92.60	123.71	0				
Yield ² bu/A	150	138	135	143	140	138	143				

¹Recommendations were made for a yield goal of 175 bu/A

²Yield difference not significant, LSD (.05) = N.S.

Table 7: Soil test results from six laboratories on a split soil sample, Fort Collins-1982.

그는 김 소리를 받는 것이 같아요			Labora	atory		
Soil Test	CSU	В	C	D	Е	F
Soil pH	7.7	7.8	8.1	7.7	8.3	8.1
Salts, mmho/cm	0.9-L	0.5	0.3	0.3		0.4-L
O.M., %	1.3	1.2	1.1	2.1	1.9	1.3-L
Nitrate, ppm N	18-L	5-VL	es l'action a str ig	VL	25	13M
Avail. P, ppm	8-H	17-M	9-VL	62	10	2-VL
Avail. K, ppm	267-VH	370-H	232-L	410	210	275-VH
Exch. Ca, ppm		4280-VH	4841	18400	2500	3230-H
Exch. Mg, ppm	· · ·	590-VH	449	1170	410	484-VH
Avail. Zn, ppm	0.6-L	0.4-VL		0.02	0.3	0.5-L
Avail. Fe, ppm	9.4-H	23-H	*******	2.8	4.2	10-L
Avail. Mn, ppm	4.8-H	10.5-M		5.3	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	7-L
Avail. Cu, ppm	3.2-H	1.6-H	a sa gara ma ja	2.1		1.2-M
Avail. S, ppm		30-M	a kana da rin a	6	anatodo	7-L
Hot H _o O B, ppm				0.9		1-M
CEC, me/100g		27.7	28.8	1 (1964) - 1 (197 7)	37.8	21.6
Lime	\mathbf{H}	н	VH	an a	Н	H
Texture	CL	fille <u>i</u>		e en		

VL—Very Low, M—Medium, H—High, VH—Very High Sampled Spring of 1982

Table 8: Comparative soil test recommendations on irrigated corn at the Greeley location-1982.

		Laboratory recommendation—lbs/A ¹								
Nutrient	· · · ·	CSU	В	\mathbf{C} , \mathbf{C}	\mathbf{D}	Е	F			
Nitrogen, N		205	210	235	180	250	255			
Phosphorus, P _o O ₅					en en la construcción de la constru En entre la construcción de la const	30				
Potassium, K Õ		and the second	100	85	130	40	50			
Sulfur, S ²		A2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70	a n as ta ata tert	60	-				
Magnesium, Mg			25	-	15	·····				
Manganese, Mn		en de la Maria I.	3	e ni sector d	5	excelors '-				
Copper, Cu					0.5		-			
Fertilizer cost, \$		60.30	92.11	81.17	88.92	85.13	82.06			
Yield ² bu/A	n n n N n n	186	189	185	210	180	192			
		Section Contractor Section	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -							

¹Recommendations were for a yield goal of 175 bu/A ²Yield difference not significant, LSD (.05) = N.S.

Table 9: Comparative soil test recommendations on irrigated corn at the Fruita location-1982.

 CSU	В	1992 - A. 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 19	a Barah <u>na shasi na</u>		
		<u> </u>	D	E	Check
180	262	260	140	200	
30	180	95	20	50	ontonione
	50	55		50	-
(and a start of the start of th	-	24	abaansa		and the second
 		1.2	<u> </u>	·	and stations
 62.40	142.00	125.04	47.60	87.00	0
79	97	97	77	80	25
	30 	30 180 50 62.40 142.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

¹Recommendations were for a yield goal of 150 bu/A ²Average of four replications, LSD (.05) = 17.9

Table 10: Comparative soil test recommendations on irrigated corn at the Delta County location-1982.

Labrecommendation—lbs/A ¹						Lab recommendation—lbs/ A^1				
Nutrient	CSU	В	C	D	Nutrient	CSU	В	С	D	
Nitrogen, N	Detraining	135	140	40	Fertilizer cost, \$	0	100.10	71.90	12.00	
Phosphorus, P_2O_5	FURNISH	120	65	********	Yield ² bu/A	200	212	227	193	
Potassium, K ₂ O		100	45		ELUIG NOUTL					

¹Recommendations were for a yield goal of 150 bu/A²Yield difference not significant, LSD (.05) = N.S.