# Soil test recommendation studies 

P. H. Follett, D. G. Westfall, T. J. Doherty, E. E. Rothman, E. J. Langin and H. M. Golis ${ }^{1 /}$<br>no. 511

of the soil samples in Colorado each year.
The objective of these experiments was to compare, under controlled conditions, university recommendations with other laboratories to determine if university fertilizer recommendations are adequate to produce optimum economic yields. A second objective was to determine if the variability in recommendations results in different yields and to determine each recommendation's cost and its relationship to yield.

## Methods

Soil samples were taken to plow depth from each experimental area. These samples were thoroughly mixed, dried and divided into four to six subsamples. Each subsample was sent to four to six preselected laboratories operating within the test area. The samples were not identified as CSU research material. Each laboratory was asked to make fertilizer recommendations for the yield goal and crop specified. Corn was the test crop at all locations.

The experimental design was a randomized complete block with four replications. The fertilizer recommendation from each laboratory served as a treatment with fertilizer being weighed out for each plot. All nutrients suggested by the laboratory were assumed to be needed and were applied. All fertilizers were broadcast and incorporated prior to planting. Seedbed preparation, planting, weed control and other cultural practices are those used by the cooperator on the rest of the field. Harvesting was accomplished by a small plot combine, and plot weights and grain moisture were taken at harvest. The yield results are reported in bushels per acre.

Fertilizer cost was based upon local fertilizer prices for spring, 1981 and 1982. Colorado State University is the only soil testing laboratory identified specifically in this report. All others are identified by letters only.

1/R. H. Follett, CSU professor;D. G. Westfall, CSU professor; T. J. Doherty, CSU extension agent; E.E. Rothman, CSU extension agent; E. J. Langin, CSU extension agent; H. M. Golis, CSU assistant professor, all department of agronomy ( $9 / 1 / 84$ )

[^0]
## Results and Discussion

Comparative soil test recommendations were conducted at five different locations in 1981 and are presented in Tables 1 to 5 . The actual fertilizer recommendation, fertilizer costs and resulting yields are given in the tables for each location. Statistical analysis of the yield results indicated no significant difference in yield for any of the locations.

The comparative soil test recommendations for 1982 are presented in Tables 6, 8, 9 and 10 . For bwo locations (Fort Collins and Greeley), the soil testresults are presented in Table7. In comparing soil test results, it is important to keep in mind that chemical procedure differences may exist that would make comparisons of some tests not possible with the given information. However, the soll test interpretations as reflected in fertilizer recommendations can be compared.

The results indicated that suggested fertilizer recommendations made by laboratories on a given field can vary considerably. Farmers must be aware of this variability and evaluate suggested fertilizer recommendations in relation to fertilizer research results and their experience for the
area. If the recommendations appear unusual for the area, it would be wise to evaluate their use on a limited area before investing heavily in fertilizer for the entire field.
"Yelds were not statistically significantly different at any location. The recommendation given by each laboratory produced the same yield, regardless of fertilizer cost. These results indicated that the recommendations from the CSU Soil Testing Laboratory resulted in the lowest fertilizer costs at the nine locations in this report.

Reliable fertilizer recommendations are the result of soil test calibrations developed from extensive field and greenhouse research. In order to interpret a soil test value, it is necessary to correlate the test value with known field response for various crops. In all soil testing programs, tables are prepared or computer programs written, showing soil test results and suggested fertilizer use for various crops. Soil testing laboratories must have access to both local and regional soil test-crop response correlation research in order to develop economical fertilizer recommendations.

Table 1: Comparative soil test recommendations on imigated corn at the Fort Collins location-1981.
Laboratory recommendations-lbs/A

| Nutrient | CSU | B | C | D | Check |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nitrogen, N | 30 | 200 | 150 | 180 | - |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | 50 | 120 | 90 | 40 | - |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$ | - | 55 | 30 | - | - |
| Sulfur, S | - | 8 | 30 | - | - |
| Magnesium, Mg | - | 10 | - | - | - |
| Zinc, Zn | 10 | 8 | 14.5 | 8 | - |
| Manganese, Mn | - | 2 | - | - | - |
| Boron, $B$ | - | 0.5 | - | 1 | - |
| Fertilizer cost, \$ | 29.93 | 106.51 | 80.98 | 64.83 | 0 |
| Yield ${ }^{2} \mathrm{bu} / \mathrm{A}$ | 164 | 172 | 177 | 175 | 177 |

${ }^{1}$ Recommendations were made for a yield goal of 175 bu/A
2Yield difference not significant, LSD (0.5) = N.S.

Table z: Comparative soil test recommendations on imigated com at the Greeley location- 1981.

| Nutrient | Laboratory recommendation-Ibs/A ${ }^{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D | E |
| Nitrogen, N | 70 | 200 | 174 | 170 | 150 |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$ | - | 80 | 30 | 40 | - |
| Sulfur, $S^{2}$ | - | 3.3 | - | 10 | * - |
| Boron, B | - | 0.5 | - | - | - |
| Pertilizer cost, ${ }^{\text {d }}$ | 16.97 | 58.10 | 46.18 | 52.86 | 36.37 |
| Yield2 bu/A | 184 | 175 | 171 | 162 | 173 |

[^1]Table 3: Comparative soil test recommendations on irrigated corn at the Delta location- 1981.
Laboratory recommendation-lbs/A ${ }^{1}$

| Nutrient | CSU | C | I | J | K | $L$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nitrogen, N | 175 | 175 | 140 | 150 | 210 | 220 |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | - | 60 | 30 | 50 | 20 | 40 |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$ | - | 30 | 40 | - | 130 | 120 |
| Zinc, Zn | - | - | 2.5 | - | - | - |
| Iron, Fe | - | - | 5 | - | - | - |
| Fertilizer cost, \$ | 43.42 | 61.73 | 52.64 | 48.93 | 73.93 | 79.11 |
| Yield ${ }^{\text {d bu/ }}$ A | 194 | 188 | 181 | 175 | 184 | 192 |

${ }^{1}$ Recommendations were for a yield goal of 175 bu/A
2 Yield difference not significant, LSD (.05) = N.S.
Table 4: Comparative soil test recommendations on irrigated corn at the Fruita location- 1981.

| Nutrient | Laboratory recommendations-lbs/A1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | C | I | J | K | L |
| Nitrogen, N | 135 | 220 | 100 | 160 | 260 | 240 |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | 30 | 100 | 60 | 90 | 120 | 210 |
| Potassium, $\mathrm{K}_{2} \mathrm{O}^{\circ}$ | - | 55 | -- | - | 225 | 140 |
| Sulfur, S | - | - | 50 | - | - | - |
| Zinc, 2 n | - | - | 2.5 | - | - | - |
| Iron, Fe | - | - | 0.5 | - | - | - |
| Boron, B | - | 1 | - | - | - | 1 |
| Fertilizer cost, \$ | 36.02 | 86.97 | 63.10 | 61.64 | 123.33 | 138.14 |
| Yield ${ }^{\text {b bu/ }}$ / | 157 | 176 | 169 | 169 | 176 | 166 |

1 Recommendations were for a yield goal of $150 \mathrm{bu} / \mathrm{A}$
2 Yield difference not significant, $L S D(.05)=N . S$.
Table 5: Companative soil test recommendations on ixrigated com at the Prowers County location-1981.

| Nutrient | Laboratory recommendations-Ibs/A |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D | F | H |
| Nitrogen, N | - | 125 | 120 | 110 | - | 160 |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | - | 25 | 30 | - | - | - |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$ | - | 20 | 30 | - | - | - |
| Zinc, Zn | - | - | - | 3 | - | - |
| Fertilizer cost, \$ | 0 | 39.24 | 40.62 | 29.67 | 0 | 38.80 |
| Yield ${ }^{\text {bu/A }}$ | 209 | 207 | 203 | 198 | 193 | 184 |

1Recommendations were for a yield goal of $175 \mathrm{bu} / \mathrm{A}$
2Yield difference not significant, LSD (.05) = N.S.
Table 6: Comparative soil test recommendations on irrigated corn at the Fort Collins location-1982.

| Nutrient | Laboratory recommendation-1bs/A1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D | E | F | Check |
| Nitrogen, N | 170 | 220 | 225 | 180 | 150 | 255 | - |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | 50 | 105 | 100 | 110 | 90 | 145 | ¢ |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$ | - | 65 | 40 | 60 | 50 | 35 | - |
| Sulfur, S | - | 3.3 | - | 20 | 100 | 16 | - |
| Zinc, Zn | 10 | 9 | - | 8 | 5 | 3 | - |
| Manganese, Mn | - | 2 | -- | 3 | - | 4 | - |
| Copper, Cu | - | - | - | 0.5 | - | - | - |
| Iron, Fe | - | - | - | - | - | 3 | - |
| Boron, B | - | - | - | 1 | - | 1 | - |
| Fertilizer cost, \$ | 63.60 | 104.21 | 86.26 | 102.79 | 92.60 | 123.71 | 0 |
| Yield ${ }^{\text {bu/A }}$ | 150 | 138 | 135 | 143 | 140 | 138 | 143 |

1Recommendations were made for a yield goal of 175 bu/A
zYield difference not significant, LSD (.05) = N.S.

Table 7: Soil test results from six laboratories on a split soil sample, Fort Collins-1982.

| Soil Test | Laboratory |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D | E | F |
| Soil pH | 7.7 | 7.8 | 8.1 | 7.7 | 8.3 | 8.1 |
| Salts, mmho/cm | 0.9-L | 0.5 | 0.3 | 0.3 | - | 0.4-L |
| O.M., \% | 1.3 | 1.2 | 1.1 | 2.1 | 1.9 | 1.3-L |
| Nitrate, ppm N | 18-L | 5-VL | - | VL | 25 | 13 M |
| Avail. P, ppm | 8-H | $17-\mathrm{M}$ | 9-VL | 62 | 10 | 2-VL |
| Avail. K, ppm | $267-\mathrm{VH}$ | 370-H | 232L | 410 | 210 | 275-VH |
| Exch. Ca, ppm | . - | $4280-\mathrm{VH}$ | 4841 | 18400 | 2500 | 3230 - ${ }^{\text {H }}$ |
| Exch. Mg, ppm | - | $590-\mathrm{VH}$ | 449 | 1170 | 410 | $484-\mathrm{VH}$ |
| Avail. Zn , ppm | 0.6-L | $0.4-\mathrm{VL}$ | - | 0.02 | 0.3 | 0.5-L |
| Avail. Fe, ppm | $9.4-\mathrm{H}$ | 23-H | - | 2.8 | 4.2 | 10-L |
| Avail. Mn, ppm | 4.8-H | 10.5-M | - | 5.3 | - | 7-L |
| Avail. Cu, ppm | 3.2-H | $1.6-\mathrm{H}$ | - | 2.1 | - | 1.2-M |
| Avail. S, ppm | + | $30-\mathrm{M}$ | $\cdots$ | 6 | - | $7-L$ |
| $\mathrm{HotH} \mathrm{H}_{2} \mathrm{OB}$, ppm | - | - | - | 0.9 | - | 1-M |
| CEC, me/ 100 g | - | 27.7 | 28.8 | - | 37.8 | 21.6 |
| Lime | H | H | VH | - | H | H |
| Texture | CL | - | - | - | - | - |

VL-Very Low, M-Medium, H-High, VH-Very High
Sampled Spring of 1982
Table 8: Compaxative soil test recommendations on irrigated corn at the Greeley location-1982.

| Nutrient | Laboratory recommendation-lbs/A1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D | E | F |
| Nitrogen, N | 205 | 210 | 235 | 180 | 250 | 255 |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | - | - | - | - | 30 | - |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$ | - | 100 | 85 | 130 | 40 | 50 |
| Sulfur, S | - | 70 | - | 60 | - | - |
| Magnesium, Mg | - | 25 | - | 15 | - | - |
| Manganese, Mn | - | 3 | - | 5 | - | - |
| Copper, Cu | - | - | - | 0.5 | - | - |
| Fertilizer cost, \$ | 60.30 | 92.11 | 81.17 | 88.92 | 85.13 | 82.06 |
| Yield ${ }^{\text {bu/ } A}$ | 186 | 189 | 185 | 210 | 180 | 192 |

${ }^{1}$ Recommendations were for a yield goal of $175 \mathrm{bu} / \mathrm{A}$
zYeld difference not significant, LSD (.05) = N.S.
Table 9: Comparative soll test recommendations on irrigated corn at the Fruita location-1982.

| Nutrient | Laboratory recommendation-lbs/A1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D | E | Check |
| Nitrogen, N | 180 | 262 | 260 | 140 | 200 | - |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | 30 | 180 | 95 | 20 | 50 | - |
| Potassium, $\mathrm{K}_{2} \mathrm{O}$. | - | 50 | 55 | - | 50 | - |
| Sulfur, S | - | - | 24 | - | - | - |
| Boron, B | - | - | 1.2 | - | - | - |
| Fertilizer cost, \$ | 62.40 | 142.00 | 125.04 | 47.60 | 87.00 | 0 |
| Yield ${ }^{\text {b }}$ bu/A | 79 | 97 | 97 | 77 | 80 | 25 |

${ }^{1}$ Recommendations were for a yield goal of $150 \mathrm{bu} / \mathrm{A}$
${ }^{2}$ Average of four replications, $L S D(.05)=17.9$
Table 10. Comparative soil test recommendations on ixrigated com at the Delta County location-1982.

| Nutrient | Labrecommendation-1bs/A ${ }^{1}$ |  |  |  | Nutrient | Labrecommendation-Ibs/A |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CSU | B | C | D |  | CSU | B | C | D |
| Nitrogen, N | - | 135 | 140 | 40 | Fertilizer cost, ${ }^{\text {S }}$ | 0 | 100.10 | 71.90 | 12.00 |
| Phosphorus, $\mathrm{P}_{2} \mathrm{O}_{5}$ | - | 120 | 65 | - |  |  |  |  |  |
| Potassium, K, | - | 100 | 45 | - | Yield2 bu/A | 200 | 212 | 227 | 193 |

1Recommendations wre for a yield goal of $150 \mathrm{bu} / \mathrm{A}$
2Yield difference not significant, LSD (.O5) $=\mathrm{N} . \mathrm{S}$.


[^0]:    
    
    
    

    70 simplify technicat icrminology, trade names of
    
     nor fs ctincism implied of producis not mentoned.

[^1]:    1Recommendations were for a yield goal of 175 bu/A
    2 Yield difference not significant, LSD (0.5) $=$ N.S.

