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PREFACE

This second part of the paper "Fluctuations of Wet and Dry
Years' refers only to the analysis of data by serial correlation in
the study of patterns in sequence of annual river flow, annual effective
precipitation, and annual precipitation, The other parts will contain:
the analysis of patterns in sequence by ranges, by runs, and by variance
spectrum (power spectrum); the effect of inconsistency and nonhomo-
geneity in data on these patterns; the effect of selected beginning of

year; and various relationships among statistical characteristics,

iii
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ABSTRACT

Serial correlation analysis is applied to investigate the patterns
in the sequence of series of annual river flow, annual effective precipita-
tion and annual precipitation at the ground. Four large samples of series
are used as research material: (1) first large sample of river gaging sta-
tions (140) from many parts of the world; (2) second large sample of river
gaging stations (446) from Western North America; (3) large sample of
precipitation gaging stations (1141) with consistent and/or homogeneous
data from Western North America; and (4) large sample of precipitation
gaging stations (473) with inconsistent and/or nonhomogeneous data from
Western North America.

Statistical techniques and final expressions for the serial correla-
tion analysis are given in summary form in Chapter B. Analysis of the
first sample of river gaging stations is the subject of Chapter C. Analysis
of the second large sample of river gaging stations and the large sample of
precipitation gaging stations with homogeneous data is the subject of Chapter
D . Effects of climatic conditions on serial correlation are discussed in
Chapter F. A brief study of the effect of inconsistency and/or nonhomogeneity
in precipitation data is given in Chapter E.

The carryover of water from year to year in river basins, which is
disposed of in successive years either by river runoff or by evaporation and
evapotranspiration, is the main factor of time dependence in series of annual
river flow, annual effective precipitation, and annual precipitation at the
ground. A factor worthwhile of further study is the nonhomogeneity and/or
inconsistency in hydrologic data of river flow and precipitation.

There is no statistical evidence that cycles exist in river flow or
precipitation time series beyond the astronomic cycle of the year. Moving
average schemes in general and the first and second order autoregressive
schemes (Markov linear mathematical models) in particular fit sufficiently
well the patterns in the sequence of annual river flows of river basins with
large water carryover.

ix



FLUCTUATIONS OF WET AND DRY YEARS

PART II

ANALYSIS BY SERIAL CORRELATION

By: Vujica M. Yevdjevich*

A. INTRODUCTION

1. Summary of Part I. Part I deals with the
assembly of research data and with the mathematical
models of this study of fluctuations of wet and dry
years.

Two large samples of river gaging stations,
one on the global and the other on the continental sanple
scale have been described as the research material for
the analysis of patterns in sequence of annual river flow
and annual effective precipitation. Two large samples
of precipitation gaging stations, one with the homo-
geneous and the other with the nonhomogeneous data,
both on a continental sampling scale, have been des-
cribed as research material for the analysis of patterns
in sequence of annual precipitation. More information
in a summary form about these samples is given in
the analysis of serial correlation of each sample. The
reader is referred to Part I, Colorado State University
Hydrology Paper No. 1] 1]#** for all detailed informa-
tion about the samples which are used in Part II.

Mathematical models as derived in Part I are
the basis for this investigation of patterns in sequence
of annual flow, annual effective precipitation and
annual precipitation by using a serial correlation anal-
ysis.

2. Definitions. The serial correlation co-
efficient T, of the order k , or of the lag k , is

defined as the product-moment correlation coefficient
between the members of a discrete time series that
are k items apart from one another. The serial
correlation coefficient sometimes is abbreviated here
as s, c.c. for the sake of shorter text.

For the series of annual flow, annual effec-
tive precipitation and annual precipitation, the co-
efficients r, are computed for the stations of this

study among all members X; and x, » where

i+k
i=1, 2, 3, ... (N-k), with N the size of time

series, k the lag of s.c.c., and X (and xi-i—k)the

standardized values of the time series X The num-
ber of correlated pairs (xi " xi+k) is N-k. The

greater k for a given N, the smaller is the number
N-k of correlated pairs. These s. c.c. refer, there-
fore, to an open time series as distinguished from a
circular time series (the last member of time series
XN is followed by the first member X, , and again

Xps Xz, .o s

*Professor-in-charge of Hydrology Program, Civil
Engineering Department, Colorado State University.

**References are designated by these brackets and
given at the end of the paper.

The discrete graph of s. c. c, £y against
the lag k is the correlogram.

The term "autocorrelation' refers here to
the correlogram and correlation coefficients of a
continuous time series. Assuming a continuous
hydrograph of river flow of finite length, its correlo-
gram is an autocorrelation correlogram with the

equation r, = f(t), where r, is the autocorrelation

coefficient (a.c.c.), and t the time lag between the
correlated values x, and S S Theoretically,

there is always in this case of continuous time series
an infinite number of ordinates, regardless of the
finite size T of a time series.

The symbols R and r, are used here for

finite time series of lengths N and T , respective-
ly for a discrete and a continuous time series. These
values are considered as the best estimates of popu-
lation values. When a reference is made to the time
series of infinite length (referred to the total popula-
tion of all possible observations), the serial correla-
tion coefficients and autocorrelation coefficients are
designated as Py and Py respectively for a discrete

and a continuous time series.

The autocorrelation function is defined here
as the mathematical expression which describes
analytically the continuum of autocorrelation co-

efficients r, or p, The correlogram of a discrete

time series is a discrete series. The expression
""autocorrelation function' will also be used, if a
continuous mathematical function is fitted to the dis-
crete correlogram of s, c. c.

3. Conditions of stationarity. It is assumed
here that the time series are stationary, except
when the contrary is stated. All hydrologic time
series have a small degree of nonstationarity. It
comes either from man-made changes in river basins
and around precipitation gaging stations or from the
inconsistency in data. Inconsistency is conceived as
systematic errors in data in form of trends or jumps,
or the systematic difference between the values in
nature and data on the desk,

By the selection of stations in this study,
an attempt was made to eliminate the records with
known or supposed high nonstationarity or to incor-
porate the data which evidently is not stationary in a
special sample of nonhomogeneous data (second large
sample of precipitation data in this study). However,
the amall degree of nonstationarity which is left in-
side the selected samples of "stationary series, "




and called here "pseudostationarity, " will not serious-
ly impair basic conclusions of the study about time de-
pendence in series of annual flow, annual effective
precipitation, and annual precipitation, All natural
phenomena, similar to hydrologic phenomena, obser-
ved or measured with similar procedures and methods
over a long time and with man-made influence on these
phenomena, are subject to this pseudostationarity, It
is considered here that the samples of time series as
selected for this study are stationary in the practical
sense, or that the nonstationarity or pseudostationar-
ity when present will not mask the effects of primarily
physical factors of time dependence.

Conditions of stationarity which are consid-
ered here as approximately satisfied are:

(1) The expected value of any X; ina time

series is equal to the population mean which is a con-
stant, or

a0
B(X) = u = f XdP(X) 1.1
-

with P(X) the probability distribution of X , and u
the constant population mean.

(2) The expected value of the second order
covariance for any position in the time series of Xi

and Xi K depends only upon k and not on the position
i; or that

E[(X; - 1) (X, = W] = opy 1o

with o? the population variance, and Py the popula-

tion s. c. e, of the lag k. These two conditions, if
satisfied, imply that the time series have second or-
der stationarity. The next condition is that of ergo-
dicity (which should be satisfied also); i.e., the time
averages converge in probability to theoretical aver-
ages.

4, Expressions for serial correlation co-
efficients. In practice the serial correlation coeffi-
cients are computed either for an open time series or
for a circular time series. Regardless of whether an

open or a circular time series approach is used, the ex

pression for p, is

i cov (xi, xi+k) L 3
Py var X, '

with cov (xi > X, k} the population covariance, and
var x, = o? the population variance. The value of Pk
is usually estimated from the available sample. Two
approaches may be used in this case:

(a) Values of the mean and the variance of
population are assumed as known, so that the esti-
mate of Pk from the sample is

N-k
Z (x7m) (g, -n)

o =t
S § 1Ty T 1.4

for an open time series, or with N-k replaced by N
in eq. 1.4 for a circular time series; and

(b) Values of the mean and the variance of
population are estimated from the sample, or

N-k _
ifl("i - %) (xp - %)
= 1.5
(N-k) s

with x and s? the estimates of y and o® from the
available sample, respectively, for an open time
series, and with N-k replacedby N ineq. 1.5 for
a circular time series,

Tk

For an independent time series and for an

underlying normally distributed population of x , the
most efficient estimate of u is

_ 41 N

X== F x. , 1.6

N j=1 1

and the most efficient estimate of o¢? is

2 1 N <12

S_ﬁ._ (x - x) 1.7

i=t

which is an unbiased estimate of ¢?., Under the
assumption of stationarity of second order, however,
this estimate of ¢? is no more unbiased.

An asymptotically unbiased and consistent

estimate of cov (xi ;X +k) is
| Nk _ B
G *mE B (% 7 %) (g - %) -8

for an open time series or with N-k replaced by N
for a circular time series. In this case E{Ck) =
= tl""pk + 8(1/N).

A consistent estimate of Py is, therefore,
r, = C,/s*, which is obtained by using eq. 1.5 with

X givenby eq. 1.6 and s? by eq. 1.7. This esti-
mate of Py is not unbiased. Its expected value is

1
E(I‘k)= Pk + e(ﬁ) 1.9
where S(ﬁl} may be neglected for N , in this study,
as large as 30 or more.

In practice sometimes, on the analogy of the
ordinary correlation coefficient, the estimate of Pk
is calculated by the following equation

N-k

ifi (5 = %) (% - %)

4= - 1.10
k (N-k) 581
for an open time series. Ineq. 1.10 the values X, ,

ik * Si , and Si"'k are given as

_  N-k _ { Nk
X, Tz B Xed Keggp Smroer B Xeaq b e v ow 1,11
i k j=4 1 itk N-k j=g it
g 1 e =2
% "k 2 by ) e



N-k

o1 - T .12
* k2 (i Xind

2
Si+k

The above four values differ slightly from x and g?
computed by eqs. 1.6 and 1. 7.

For small values of k the estimates of Py
by using rk* of eq. 1.10 give negligible differences
as compared with r, computed by eq. 1.5, or even

eq. 1.9. As it will be shown later, the first one or
two Py values are the most important in the analysis

of patterns in sequence of annual flow and annual pre-
cipitation.

The computation of serial correlation co-
efficients in samples in this study was done by using
egs. 1.10 through 1,12, A greater amount of bias is,
however, introduced when eq. 1.10 is used instead of
eq. 1.5 for the computation of r, with large k .

It is assumed here that a replacement of N by N-k
in equations for estimating the mean and the variance
of distributions of r, of normal independent vari-

ables will account for this bias in the case k is
large.

As it is difficult to calculate the distribution
of rk* of eq. 1,10, its distribution will be replaced

or substituted by the distribution of Ty computed by

eq. 1.5, either for an open or for a circular time
series, and either for y and ¢® assumed as known,
or for u and o® estimated from the sample by egs.
1.6 and 1.7, The values of k are 0, 1, 2, . . P o
where m is the highest value of k selected to be
computed, but with m usually much smaller than N.
The negative value of k gives r=T, - The

r
value of S

correlated with itself. The correlogram starts,
therefore, from the coordinate [ k= 0, r = 1] and

decreases both to the positive and negative values of
k . The first serial correlation coefficient (f. s. c. c.)
ry is often the most useful in the current analysis of

It is computed by eq. 1.10

is unity, because in this case each x; is

hydrologic time series.
with k=1,

As the sequence of annual flows cannot be
taken as repeating itself with the same patterns, the
closed (circular) series approach has not been used
in this study for the computation of re - However,

if the lag k is very small, and N is high (i.e.,
k=1, Nmin = 30), the equations developed for the

distribution of statistical parameters of circular time

series may be used as approximations fc?r d‘istr;bu-
tions of statistical parameters of open time series.

5. Objectives of this part of study. This
analysis of annual flow, annual effective precipitation,
and annual precipitation by using the serial correla-
tion technique has the following objectives:

(a) to show the degree of time dependence

.of each type of time series analyzed;

W)

(b) to obtain an insight into how this depend-
ence in time series differs from one series to other,
i.e., to compare changes in dependence between
measured river flow and effective precipitation in the
river basin and also between effective precipitation
and measured precipitation;

(c) to infer from the results the most appro-
priate mathematical models for this dependence as
outlined in Part I;

(d) to show the regional distribution of first
serial correlation coefficient, and to get an insight
into how r, changes from one region to another, and

what may be the variation of future values of ry for
those regions; and

(e) to investigate the effect of general climate
(i.e., humid or arid regions) on time dependence,

6. Methods used in the analysis, Properties
of normal independent variables ané of normal depen-
dent variables of a known stochastic process are dis-
cussed first,

Distributions of serial correlation coefficients,
and the statistical parmeters which describe these
distributions from observed time series of annual
flow, annual effective precipitation and annual pre-
cipitation at the ground are compared with distribu-
tions of normal independent variables and their pa-
rameters, respectively, Differences are analyzed
and an attempt is made to explain and relate these
differences to the physical and nonphysical factors.

Properties of the first serial correlation co-
efficient in particular are investigated, because this
parameter is usually sufficient to describe the time
dependence in hydrologic series of annual values,

Other items concerned with herein are: an-
alysis of correlograms of individual series, as well
as average values of serial correlation coefficients
for entire samples; statistical inference, whenever
appropriate techniques are available; discussion of
regional patterns in the distribution of first serial
correlation coefficient; and investigation of mathe-
matical models for dependent time series of annual
values of flow are investigated for their limitations.



B. SERIAL CORRELATION OF VARIABLES,

INDEPENDENT OR DEPENDENT IN SEQUENCE

1. Distribution, expected value, and vari-
ance of serial correlation coefficients of normal in-
dependent variables. The following is stated on page
207 in Appendix 2 by P. Whittle of the book, Station-
ary Time Series, by Herman Wold [ 2]: '""There are
very few statistics in time series whose distributions
may be evaluated exactly, and approximations are the
rule rather than the exception. One of the stumbling
blocks in the way of exact analysis is the 'end effect’
of a finite series, which must usually be neglected,
the justification being that it is sensible for a short
series.' Expressions given here for probability den-
sity functions as well as for expected values and vari-
ances of s, c. c. must be understood, therefore, as
being only approximations. .

Distributions of serial correlation coeffi-
cients, which are available in the literature, refer
either to circular time series, (which was a histori-

" cal development at the beginning of analyses) or to
open time series, and two cases are currently treat-
ed: (a) mean and variance of the variable x in the
expression for the estimate of py are considered as

known; and (b) mean and / or variance of the variable
x are estimated from the sample like the covariance
itself.

The approximate probability density function
for ry o, the first serial correlation coefficient

{f.s.c.c.), of a sequence of normal independent var-
iables estimated by eq. 1.4, or with mean u and
variance o¢? known (in a circular time series) is
given by Dixon [ 3, page 125, eq. 322], which is based
on derivations by Koopmans [ 4] and Anderson [ 5], as

NS+ 1)

I
T+ E)\/;
According to Whittle[ 2] the result of eq. 2.1 is valid

for any of the first few s, c, ¢. of normal independent
variables, or for any Ty with k relatively small.

. (N-1)/2

f(rl) = ry ) 2: 1

Moments of the probability density function of
eq. 2.1 are[3]:

o o M o s P
My =0 M, "z M3 G My "I nvg) 22

This function is symmetrical and the kurtosis is
M4!M22 = 3(N+2) /}(lNH), which is approximately 3 for

sufficiently large N (say N = 30), Standardjzing the
variable r, by setting x = rli' M, = r, \/N+2, the

density function of x becomes

rG+0)VNeZ | e

o T e 1 )
v

(N-1)/2

-2 :
which converges to e X ‘!ZIJZ 7 as N increases to
infinity, for every fixed x . Therefore, the central

portion of the distribution of eq. 2.1 may be approxi-
mated by a normal function with zero mean and stan-
dard deviation 1/ N+2, if N is sufficiently large
(say 30 or more), except near the extremes of the
interval [ -1, +1], Dixon has shown also [ 3, page
126, eq. 3. 21] that in case the mean and variance of
x are estimated from a sample by eqs. 1.6 and 1.7
and r, is computed by eq. 1.5 for a circular series,

the moments of probability density function of r 1 (or
for other ry with k relatively small) are:

=3

g PP .
2 " M3 ® [y

e
My =g M

= 3
M4-r——)—(—)-N+1 N3 2.3
These results are similar to Anderson's [5]. Ander-
son gives the expected value of ry of a circular time

series with r, estimated by eq. 1.5 in the case
k =1, and the mean and variance of x estimated by
eqgs. 1.6 and 1.7, as

-1 i

Ni“I-N g4

E(ri) =

but the variance of ry inthe asymptotic form as

N-2
(N-1)2

Siddiqui [unpublished study, 1957] used the
following estimate of Py for large samples and small
k:

var r, = 2:b

1

N-k _ _
2 ) (23 .
TS 2
k N *
= (xi -x)?
i=1

or an open time series approach. For normal inde-
pendent variables, he obtained

w2l
E(rlj ol 2.7
and
3 2
E(r,y) - X2+ 3 2.8
N? (N?-1)
with the distribution of Ty s
(N-1)/2 (N-3)/2
(]_-r ) f+r 1
i(r k x + ¢ b2) 2.9

) = = =
k N-1 N+1 N-1
2 B("T_’T—)

For sufficiently large N (say N = 30) the last terms of
eq. 2.9 in the form ¢(1/N? may be neglected.




2, Significance test for serial correlation
coefficients of normal independent variables, The
single-tail significance points are given by Anderson
[5] for a circular time series of size N for two
different levels, 5% and 1%, For the case in which
p, is estimated by eq. 1.5 and the mean and variance

of x are estimated by eqs. 1.6 and 1.7, the follow-
ing two equations are obtained:

ry(5%) = 121845 IN-2 2.10

and

-1+ 2,326 /N-2 211

ry(1%) = N-1

Anderson gives a comparison between the exact and
these approximate values of significance points for
positive and negative tails for 5% and 1% level and for
N =45 and N = 75, The differences are shown to

be relatively small, He recommends the use of exact
values for N < 75, and normal distribution values
for N>75. Dixon has shown that the normal approx-
imation may be used for N somewhat less than 75,
because differences between the exact and approxi-
mate values in Andarson's table are greater since he
used an asymptotic second moment, as given by eq.
2.5, and not that given by eq. 2.3. Dixon, using the
Pearson Type I approximation and the first two mo-
ments of eq. 2.3 obtained as the distribution of ry

the fitted curve

(t4r )P (1-r )97t

1

f(rl) =

B(p,q) 2P*a7!

_(N-1) (N-2) . _ N(N-1
P“(Truj)_)'N_ ,q-—HZN_ 2.13

and B(p,q) is the Beta-function with p and q
parameters.

in which

The compa rison between exact values, values
obtained by Pearson Type I approximation, and
values obtained by normal function approximation for
5% point and 1% point is given below for both positive
and negative tail. This comparison is based on ex-
pressions given by Dixon [ 3, page 127], for ry

estimated by eq. 1.5 with k = 1, and the mean and
variance of x estimated by eqs. 1.6 and 1.7 for a
circular time series. The sample size used is N = 30,
which is the minimum value used in this study for
series of annual flow and annual precipitation, This
comparison is

Positive tail, 5% point
Exact Type 1 Normal
0. 257 0. 257 0. 255
Positive tail, 1% point
0. 370 0, 371 0, 375

Negative tail, 5% point

0. 324 0. 324 0. 324
Negative tail, 1% point
0,433 0,433 0. 444

" least 30,

Differences decrease with an increase of N,
so that for N = 75 there is practically no difference
between the three values. As tests in hydrology do
not go to a point below 1%, but are stopped usually at
the point of 2, 5% or 5%, it can be assumed that the
normal distribution is a sufficient approximation for
all necessary tests in the case of normal independent
variables (null hypothesis for r, ) even when N = 30.

If eq. 1.4 is assumed to have been used for the esti-
mate of P (sufficiently long time series), the nor-

mal function approximation to eq. 2.1 and the first
two moments of eq. 2.2 may be used for the test of
significance of the computed r) if tail point is not

below 2.5%. Equation 2.9 may also be approximated
by a normal function, if N is sufficiently large (say
N = 30), and the tail point test is not below 2. 5%. If
the point is smaller than 2. 5% (say 1%), Fisher's
z-transformation of r, may be used. In this case,

the normal function for z and s(z) may be applied,
where s(z) is the standard deviation of the z-trans-
form. 3

Assuming p =0ina simple linear correla-
tion of two variables, then according to Fisher [ 6]

{-p2)(N-4)/2
p(r) = N2 2,14
(5. ]
2Tz

This equation is similar to eq. 2.1 except that the
power is (N-1)/2 in eq. 2.1 with a different constant
part. Equation 2.1 becomes equivalent to the above
equation if N in eq. 2.1 is replaced by N-=3., There-
fore, Fisher's z-transformation (usually applied to
simple correlation coefficients) may be applied also
to serial correlation coefficients, if N is replaced
by N+3in eq. 2.14. The currently used Fisher's z-
transform is .

z=%loge-}f:—§ = 2,15
with the expected value
E(z).f.s% loge-liég G 2.16
The variance of z is given by
1 2.17

varz = g3 -

For serial correlation coefficient with small

k of an open time series, N in eq. 2.14 should be
replaced by N+3 . In this case
vVar z ='I71f 2,18

givek the estimate of the variance of z-transform of
the serial correlation coefficient ry for the first few

k wvalues.

For a large number of series and for normal
independent variables, the values ry of k relatively

small in comparison to N are normally distributed
in the range 2. 5% and 97. 5% of probability for N at
To test whether or not the s, c.c,'s, Ty

are significantly different for an observed series from
those of normal independent variables, the 2, 5% and

97. 5% tail levels are usually determined from the nor-
mal function in this study. "The test of significance




will be designated as that at 95% level.

The number of stations of flow or precipita-
tion in this study is n . Individual stations have -
records of different length N, . There is, therefore,

a need for computation of the weighted mean and the
weighted variance of ry for both the observed series

and the normal independent variables. For observed
series the mean r, is computed in two ways:

(a) Simply as

2,19

where rkj represents the T value for the j-th
station with the sample size Nj 2

(b) As the weighted mean by using different
sample sizes for time series as

n

n
Fk*= Z N.r_./ = N,

2,20
j=1 Ikj j=t 3 °

thus giving a larger weight to ry values for series
with long records.

The variance of Ty for a sample of n sta-
tions, and Nj which is changing from station to sta-
tion, is also computed in two ways:

(a) Simply as
n

z 2,21

=l L

£ = B
var r ; 1{rkj rk)

by using either n values in ungrouped r, value

approach, or using the frequency of e intervals

in the grouped ry value approach; and

(b) As weighted variance,

n n
var r, = Nj(rkj-?k*)zf = N. 2,22

£ et =1

n
For a sample of stations the value Z:N‘j is a constant.
=t

For normal independent variables (or bench-
mark variables) the mean r =0, ifeq L.4is
assumed to be used for the computation of r . If

eq. 1.5 or its approximation eq. 1.10 is used for the
estimates of Py the mean o is computed in two

ways:

(a) By using the average length N, of
series for a given sample of stations and eq. 2.4 as

S — 2-23

and

(b) By using the weight Nj and eq. 2.4 as

xa 2.24

When eq. 2.7 is used, there also are two cases:

(a) By using the average length N, of

series with r = - l,le , and

(b) By using the weight Nj as

= i 8 4
o= - E—jT : 2,25
=1

The variance of Ty for normal independent
variables with given n , and the weight Nj , is
computed also in two ways:

(a) By using the mean length N and
equation 2. 2

1

var r, = 2. 26
k N_+2
or N andeq. 2.3
=1 2. 27 ri
var r, = gy . :_
m i

(b) By using the weight I*:Ij and eq. 2.2

n N. n
varr = Z gl / Z N,

2,28
s N.A2 . *
=175 =t
and the weight NJ. and eq. 2.3
n N. n
varr, = j;z:1 _LN].+1 IJE:le 2.29

_ For testing the significance whether the
mean r, or the mean Fk‘* of an observed sample

of series (n series) is or is not significantly different
from the corresponding means Iy or r* of normal

independent variables; the normal distribution of
means of normal independent variables is determined
by using the variance

var r, = 2.30

and similarly for Fk*- by replacing r, ineq. 2.30by
r*. Ineq. 2,30 var r, or varr * is givenby

respective expressions of eqs. 2, 26 through 2. 29, ¥
The values Ty and Fk* are assumed to be normally

distributed about Fk or Ek* , respectively,

3. Non-normal variables, Bartlett [ 7] has
shown that for large samples the variance and covar-
iance of r, are independent of the distribution of x

under fairly wide conditions. According to Quenouille 3
[8] "this means that their joint distribution function
obtained for normal independent variable will often
give a good approximation for nonnormal independent
variables, and can be used as the basis for any test
of the correlogram.' In general, if the kurtosis of

e



the nonnormal distribution is around 3 (or excess
around zero), the above statement is valid. Usually
this condition is satisfied with variables like annual
flow and annual precipitation. It can be assumed,
therefore, that the distribution functions of annual
flow or annual precipitation are nearly independent
of the properties of s.c. c. of their series. Further-
more, the significance test of these properties may
be carried out regardless of whether or not the dis-
tributions of flow or precipitation are skewed.

4, Distribution, expected value, and vari-
ance of serial correlation coefficients of dependent
variables. It is assumed here that the properties of
serial correlation coefficients of non-normal depen-
dent variables are approximately the same as those
of normal dependent variables, so that it is sufficient
to investigate the latter case.

The general mathematical model which re-
lates V- and P -series [1, page 13, eq. 10] as
affected by water carryover in river basins (which

storage is bound to flow out of river basins either by
surface or underground flow) is

j=0
Vo™ jz=o by Pyt ey 2,31

with V ~ the annual flow of the n-th year; Pn-j the

annual effective precipitation of (n-j)-th year, or j-
years preceding the n-th year; b. the coefficients;

e_ a random component which takes care of the fact
that b, coefficients are only the average values. The
b. coefficients should satisfy six conditions [ See Part
I, 1]. The main ones are: sum of b, coefficients is
unity; all are positive; and they decrease monotonically.

The general moving average scheme of eq.
2. 31 embraces simple mathematical models like
autoregressive linear schemes of the first and second
order (Markov first and second order linear models),
and similar models.

Assuming that e, in eq. 2.31is zero, and
that {Piq is a sequence of mutually independent vari-

ables, which replaces PI1 variable in eq. 2. 31,

this equation may be transformed by a recurrence
procedure in Vn as function of vn-j values. Thus

eq. 2.31 for boPn "y becomes

Vn=en+ alvn_1+ aZV *  oim oy e

n-2
w
= _E ajVn_j + €y 2. 32
j=o
in which bl
ay = —
1y
[}
2
5, il By
2 3
2 bo bo

z z
b4 1:|1 ]::2 Zbib:,’ :«!b1 bz )
a4 = - 5- -4 - - + . etc.
o b b0 bo bo

These coefficients a; do not decrease monotonically;
they may be either positive or negative, and their
sum is not unity. It should be stressed that the a.j
coefficients have been derived from b, coefficient
under the assumption that Pn-j or{Pi} in eq. 2.31

are mutually independent variables. It will be shown
later that Pn-j or {Pi} are not actually mutually

independent variables.

Replacing {Vn} in eq. 2. 31 by a sequence of
dependent standard normal variables {xi} , and
{Pi} by a sequence of independent standard normal
variables{ yi]v , and putting Ly 0, eq. 2.31 be-

comes
w
X =By TRyt - T Z By 2.33
k=0
The relationship of Bk and bk coefficients in this
case is
b
k
Px * & 72 2534
[ Z b, 3]
j=o

because the ratio of standard deviations of {Pi} and
{vi} variables in eq. 2.31 is

o] 1/2
1/l =b.? "
j:oJ

a0
Since = b.=1, E(x)=E\y.),
j=0 J 1 1

2y = 2 =
E(xi ) E(yi} , and E(yiyi+k) 0 for k#0 and
var x; = vary, = i,

2

a
z B .
ook =t 2.35

It follows from eq. 2. 33 also that
By = E(xiyi_k) . 2, 36

Since py = E{xixi+k]' then

(0 0]
© .Eobjbj+k
P = T BB, = lm————— 2. 37
j:o J J 2
T b,
j.—-o J

] The mathematical expression of eq. 2. 31
requires that Bk >0 forallk, with Bo >0,




According to eq. 2, 34 the condition

w [e3) -1/2
ZB | Zh} > 1 2.38
j=o j=o

[e0)

must be also satisfied because = bjZ is smaller than
j=o

unity.

The special case of eq. 2. 32 is the first
order linear autoregressive scheme (Markov first
order linear model), for which eq. 2.32 is expressed
with only one term under summation. Putting a; =p

and j=1 in eq. 2,32, this scheme becomes

= 2
%5 =Pt 2, 39

where p = p, is the first serial correlation coeffi-

cient of the variable x . Inserting for x, and x,

i it+1
the corresponding values from eq. 2, 39 into eq. 2. 33,
which substitution implies that €y Boyi for all i,

then

k

Bk=ka_1:Psz_2=- .. '_'PBO

For conditions of stationarity |p| is smaller than
unity. Since

Zﬁkz =1, BozEpZR = Boz.f(i-pz} =1, or

k 1/2
By = p (1-p?) / 2, 40
Equation 2, 37, with the values for Bj and Bj +k
given by eq. 2.40, becomes -
Py = P 2,41

As Bk>o, then 1 >p>o0, Inthiscase p is

estimated by the first serial correlation coefficient
ry of the sample as

N-1
N gep it
Ty SR-1 N 2,42
z x?
i=o !

Since Py = pk , the correlogram is of an exponential
type, with p, decreasing asymptotically to zero as
k increases to infinity.

According to Madow [ 9] and Leipnik [ 10]

for p inegs. 2,39 and 2. 40 estimated by eq. 2.42,
if N > 20, the distribution of ry (zr) is

rINE2 N N-1
HE) R 1€+1 t-2rptp?)  H(1-1%) 2 2.43
I= —] ™
2
with

_ N . _ 1 N(N+1)p?
E(r) ‘_DT-%Z' ; and E(I‘z) * Nvz +(N—+2(‘)-m%5)— 2.44

and
-1 N(N-2)p?
¥ar T NE {N“Tﬂz '()'ENM] .

Quenouille [ 11] states that the transform

2,45

Z = tanh—lr , with & = tanh'tp is approximately
normally distributed with

1+p?

T IR . EESIS T 2,46
E2)= & N5 " N(1-p9)
and
2
var z = : s 2p 2. 47
N(1-p%)  N¥(1-p3)?

which requires the knowledge of p .

Quenouille [ 12]
t-transform of r as

and White [ 13, 14] use

i r- N+1 2. 48

1-r?

which is distributed as

f(t) = K(t) [1 - pt 2,49
e [£2 + (N+1)(1-p%] 12
where
z y-(N+2)/2
N t
i P[z-+1] [“m
) = T 2.50
I“[ > ] J7 (N+1)

which is the Student t-distribution with N+1 degrees
of freedom. To test the hypothesis that Py =0, eq.

2.43 with p = 0 may be used and the Student t-distri-
bution with N+1 degrees of freedom applies for a
two-sided test. A knowledge of the mean is required,

To show the applicability of the model of eq.
2. 39, it is assumed here that the flow recession .
curves at the end of water years are approximated by

an exponential curve of the type Q = QOE-Ct [1, p.

19]. The b, coefficients are relative areas (area
divided by total area W = Qof c) for t between
0-1 {bo} ; 1-2{b1}, 2-3(b2], etc. In this case the bj
coefficients are

g- caf e f o a) a1,
e’ ¢ C’ezc eC' ?C cl]re o

e e

. @« -C
and they give jfobj =1;bk ze bk_i; and ﬁk =
= e-ch—l . Substituting x of eq. 2.32 into eq.
2,33 and equating the coefficients for Y o Fyoqo
Yi-ps v oo and using the relationship

ck

Bk=e' Bo 2.51




then €5 =

Boyis By=aBys By=aBy+aB,;

. ; b
83=a182+az,63+ a3[34; etc., which give a, =e 2
a, =o; 83 =05 a;=o0; etc., The simple exponential
curve fitted to recession curves of flow leads to the
first order linear autoregressive scheme of eq. 2. 39

_ . _ .—ck
, because a, =py; and P =€ -

with p = e ©
The next special case is the second order

linear autoregressive scheme, in which model only
two terms with a; coefficients different from zero are

used in eq. 2. 32, or

iR + €

jog Y%t € Cint

Substituting the values of x of eq. 2.52 into eq,
2, 33, and equating coefficient for Vi Yjoq s o v o s

then €; =8.y; 58y =aB, 5 By -aBy (-28,,=0,
for k=2, 3, . .. To solve the last equation by finite
differences, _Bk = Bk is assumed. It gives

32*a1;3 -a,=0, or 28=a % {ai"- +da,.

stationarity the absolute value of 8 must be less than
one, i.e, B=rcosf+irsinéd, with|r|< 1. So

For

2 = 2 . -
ay +4az‘i°' or 4a25 a;”, or a, is negative.

From this cos 0 = al;" 2 /-az ; and 2 sin @ =

= 24+ai";’a2 , so that 8 = r g0 ,

3, = r*(ae™® + Be™ ™8 For k=0, andk=1,

and

“k
L . - -ie i6
A+B—30, ai'Bo r (Ae + Be ). As
r(e-ie + e+is) =a, , then
ﬁork
Bk *snd sin (k+1) 6 2.53

Equation 2. 53 implies that Bk can be also

negative when sin (k+1)6/sinf becomes negative.
This model is used regardless of the fact that Bk be-

comes negative when k is sufficiently large. How-

ever, only positive values of 'Gk are used. It is
assumed that 3, = 0 as soon as it becomes negative.

The smaller the angle 8, the larger is the lag k be-
fore B becomes negative. Since (k+1)8 should be

smaller than = for 'Sk to be positive, then

k < {-g-- 1) . Inthis case if 6 is 60° then k< 2,
or -92 = o0, and only BO and ,B1 are assumed as

positive and different from zero. This gives

2 2
(43.2 +a, W1+ az}(i + 2a2 cos 26 + az)

o 29.2(1 - az_)(i - cos 26) 2.54

The values a, and a, for the determina-

2
tion of {30 are obtained from the expression

Pk = 21Pk-1 * Py 2.55

By using r; and r, as estimates of Py and Py

respectively, by putting Pk = Pk and Po = i1, and

using values of k=1 and k=2, a, and a, are
found to be
s W "2“‘12
3.1:__‘"""-_2 ; a2=———2- 2.56
1-'r1 1-rl

with the condition that a, < - 312!4 must be satis-

fied if the model is to fit. The multiple correlation
coefficient R 1is estimated by

2

- 2z H =
1 Zri +2r1r r,

2

1 -R%=
1-1:'1z

and J1 - R? is also an estimate of B, -

The question arises also what should be the
shape and mathematical function fitted to flow reces-
sion curves in order that the second order linear
autoregressive scheme would be an appropriate
mathematical model for time dependence of annual
flows. In general, an expression of the type

-ctn
Q= Qe 2.58

can be fitted to flow recession curves with Qo initial

flow (flow at the end of the year on the recession
curve), and c¢ and n the two main parameters, with
n any real number, usually greater than unity.
Assuming that the area of this curve from t=o0 to t=

= (Q = Qo to Q =0) is W, then the by coeffi-
cient may be assumed to be
Q k+1 _ .n
bk=W°£ e tat . 2.59
Subsiituting ct™ = %, then
n 1
b, = 9“% _.17?1 fc(kﬂ) L . 2. 60
nc el

which is an incomplete gamma function of 1/n for

given limits ck™ and c(k+1)", with k=o, 1, 2, ..
Using the tables of incomplete gamma function for

given limits and the coefficient Q}(Wnc”n}, the
values b0 R b1 s » «» » may be computed, From b,

coefficients thus computed, the a. coefficients of

eq. 2.32 may be determined. If it happens that for
given values of ¢ and n the coefficient a, 1is posi-

tive but a, is negative, while a, and a, are very

small, the second order linear autoregressive scheme
of eq. 2.52 may be applied. The fact that eq. 2.58

is usually only an approximation to a group of reces-
sion curves plotted for a river gaging station should
not be overlooked.

5. Effective number of stations with interstation
correlation., When such statistics as the mean for
many stations or the mean of the means, mean

variance, mean first serial correlation, etc. are




studied for river flow or precipitation, the fact that
these variables are correlated for stations taken pair-
wise (interstation correlation) cannot be disregarded.
The effective number of stations n & for the inter-

station mean x of a statistic x is defined here
from the relation var x = var x,-"ne . The effective

number of stations n, means that n stations

which are correlated have the same variance of x
as n, stations which are uncorrelated (independent).

Correlated or uncorrelated stations in this case imply
that the values of a statistic x are or are not corre-
lated, respectively.

The effective number of stations n g depends

upon the statistical parameter under investigation.
One n, value is obtained for the regional mean, an-

other for the regional mean variance, a third for the
regional mean first serial correlation coefficient,
etc., if the same basic variable with the same num-
ber of stations is investigated,

It is assumed here that py values of the

f.s.c.c. for time series of annual flow and annual
precipitation of different stations are not independent
among themselves. Unfortunately, the length of time
series for most stations is too small to permit a
division of the series into several parts for each of
the two stations, or to allow the computation of cor-
responding ry values of the f. s. ¢. c. for each part,

and then to determine the simple correlation coeffi-
cient for the concurrent values of ry. Therefore,

the interstation correlation coefficients between values
of basic variable x must be used, *

The expression for effective number of sta-

tions, ng > of f, s. c.c, is determined here by

assuming that the same variable is investigated for
two stations (say annual flow, or annual precipitation).
This variable is designated here by x for the first
station and by y for the second station (any pair of
stations), They are assumed to be standardized
(mean 0, variance 1). Stations are assumed to have
series of the same length N , The covariances of
successive values of two series are

2.61

with
EC,(x) = py(x) and EC(y) = p,(y)

which are the first serial correlation coefficients for
x and y , respectively. The expected value of the
product of these two covariances is

N-1N-1

1
Eci(x) Ci(.Y) = [N‘l)z J=21 _]i:]. E(xixi+1yjy.]‘+1) ¥

If the x and y variables are approximately normal-
ly distributed (Gaussian distribution), then

*The following equations 2, 61-2, 73 have been derived

in consultation with M, M. Siddiqui, Colorado State
University,

N-1 N-1
(N-1)2 J'El ifl LEGt40) BO ) +

EC,(x) Cy(y) =

+ E(xiyj) E("i+13’j+1) + E(xiyjﬂ} E(xiﬂyf]-

It is assumed here that the simultaneous
values X » Yy are correlated, while the time lag

correlation of X s Vg for s# o0, is negligible,
or that E(xiyj) =0, if i#j; and E(xiyj) =p, if i=j.
Also the stationarity condition gives that E(xixi i 1) =
=py(x), and E(yiyjﬂ) = p,(y), because t:rxz =1 and

v i=1,

Yy

The value of p is the simple correlation co-
efficient among simultaneous values of x and y.
Then E(x;x;,4¥.¥54q) = py(¥)py(y) . if 1# ] and

= H i 1 = 7 -
E(Xixi-i-lyjyjﬂ) = pi(x)Pl(y} +p®, ifi=j. The expec
ted value of the product of covariances is

1
EC,(x) C,(y) = pror {(N-l)[pl{x}pi(y) +p] +

+{N-2)(N-1J91(X)p1(y)]» = o (0py(y) + gy . 2.62
This gives

Cov [C,(x), C(y)] =fﬁii1 . 2,63

The sample estimates of p,(x) and pi(y} are rl(x)
and r1{y) , respectively. The expected value of their
product is

Ci(x C,(»
Eri(x} ri(y) = R C_OGC‘)_EEG’T =
EC,(x) C,(y

)
=E_C0{;)TOG) [1+ 6(1,N)],

where Co(x) and Co(y} are sample variances of x

and y , respectively, and 6(1/N) represents terms
which are of the order 1/N as compared to unity.
The latter mentioned terms will be considered here as

negligible. Now
1 3 N 2, 2
ECy(x) Cyly) = % i;ﬁl < E(x %y,
ek ‘g g [Ex.*Ey.? + 2(Ex.y.)? ]
N it jeq 1] ]
Thus, =1 +_2NE_Z ’ st

Ery(9r,() = (o, (0o, () + g ] [1 -8 + 6(h)

2 2p%py(x)py(y)

= Pl{x]Pi(y} ok N-i = N + 8( 2' 65

1
N -




Finally

2p%p  (x)p,(¥)
Cov [r,(x), r (y)] -IG: - 1N — ol

x? 2.66

Again, if either pl(x) or pl{y) or both are small,

the second term will be negligible compared to the
first. Hence, under these circumstances,

Cov [r,(x), r,(y)] =I—£% 2.67

approximately,

Variances of ri(x) and rl{y) depend upon

the mathematical model of serial correlation of x ,

and of y ., It is assumed here that the simple model
may be used in the form of the first order linear auto-
regressive scheme. Then the variances of rl(x) and

r,(y) are given by eq. 2,45 in which p? is replaced
by p *x) and p*(y) , respectively for the two series

The last term in eq. 2,45 is not negligible in compar-
ison with the preceding term which is 1/(N+2). For
N = 30, and rl(x) or ri(y) being assumed equal to

0.5 (which are large values for f.s. c. c. of annual
flow and annual precipitation), the two terms in eq.
2,45 are: 1/(N+2) = 0,0313, and the last term is
0.00603. The last term is 19. 2% of the preceding
term. For small values rl(x) or rl(y), or around

0.10 - 0. 20, the last term in eq. 2.45 may be neglec-
ted. However, due to different values of rl{x) or

ri(y) , the last term in eq. 2.45 is retained here and
approximated by:

“[var r,(x) var ry(y)] Yz .

{ N(N-2) [p, %) + p;%y)] L2
Nz | N+ 2)(IN+ 4)

2,68

with the term [plz{x)plz(y)] neglected because of the
fourth power of the product pl(x) and pl(y) .

For By designating p[p,(x), py(¥)] or the

correlation coefficient of the f. s. c. c. between two
stations, it becomes

Cov [ ry(x) r,(7)]

o = , or
ij [varrl(x} var rl(y)] 1/2
N+ 2 N(N-2) [p*(x) + py*(y)]
Pij “ N-T P 2N+ 2)(N+ 9) 2.69

To estimate Py

by r , product-moment correlation coefficient of x
and y ; py(x) by r (x) , the first serial correlation

coefficient of x ; pi(y) by rl(y) the first serial
correlation coefficient of y ; and N by Nij the

j the value p ineq. 2,69 is estimated

number of simultaneous values of x and y in their
correlation.

11

The statistic Ft , or the regional mean of

the first serial correlation coefficient for a sample of
series, of sample size n , is tested for significance
by using the following expressions, The statistic

r is
n
Zr
- i=1 !
ry = . 2,70
Its variance is
- var r, _
var r, =T—-—-[1+ Z(n-1)p 1, 2,71
where
s 2 n n
P01 Z E op.., 2.72
n{n=1) 0y jegaq U
and p;; are defined by eq. 2.69. As seen from eq.

2.69, to estimate pij one needs the estimates of p ,
pl(x) and pl(y) . These are easily obtained from

the samples of x and y series. To be more

specific, let ’p‘ij designate the estimate of Pij » T

ij
the simple correlation coefficient between x and ¥
series based on Ni' observations, and rl(x} and
ri{y) the f, s. c,c. based on the same number of ob-

servations, then, from eq. 2.69,

o+ 2 N 7 2
ﬁ.A=——-1—N1 il 1+IEJ—(N11 AL B Xy o 2.73
ij Nij-i ij Z(Nij+ Z)(Nij+ 4) :

Finally, the effective sample size n, for r  is
estimated to be

n_= 2.74

e

1+ r(n-1)

where T is the estimate of p
2,72 with P3 replaced by ﬁij

obtained by using eq.
from eq. 2.73.

As rl(x} and rl(y) are computed for the

total length of series x and y , respectively, and
not only for simultaneous observations in the two
series, Nij . the value r (x) and r (y) for the

total series x and y will be used in eq. 2.73 as
better estimates of pl(x} and pi(y) , respectively, 1

than rl[x) and ri(y) values for sample size Nij i

The value ﬁij of eq. 2.73 is a biased value,

because it is always positive (like the multiple correla-
tion coefficient R ). Even if the series of x and ¥
are serially uncorrelated and mutually independent,
the sampling deviations of rl(x) 4 rI%’y ; and ri

about their true values will produce positive values of
rlz(x) 3 riz(y} , and r-i‘2 , and therefore, a positive

$ij . However, if Ty o ri(x) and r,(y) are small,
their squares are very small alsq and they will pro-

-~

duce a relatively negligible positive value of $ 1"




C. ANALYSIS OF FIRST LARGE SAMPLE OF RIVER

FLOW RECORDS

1. Method of data analysis. A dilemma
existed when the method for data analysis had to be
selected: (1) to treat initially and separately the
characteristics of series of annual flow, then of
annual effective precipitation, and finally of precipi-
tation, and afterwards to study the relationships of
their individual patterns in sequence; or (2) to study
series of all these variables--either flow and effec-
tive precipitation; or flow, effective precipitation and
precipitation at the ground-- simultaneously for a
sampling region, both for their patterns in sequence
and for their interrelationship. This second method
has been adopted here for the simple reason that the
two aspects: patterns in sequence of individual vari-
ables and the relationship between the three variables
may be best investigated simultaneously in their com-
plex interdependence.

2, Frequency distribution of first serial
correlation coefficient, The number of river gaging
stations of the first large sample of river flow re-
cords is 140, so there are 140 f. s. c.c. for the study
of its distribution. The mean length of these 140
time series of annual flow (V-series) and annual ef-
fective precipitation (Pg-series) is Nm= 55, and the
extreme lengths are N . = 37 and N = 150 .,

min max

Two cases are analyzed in comparing these
two series with the normal independent variables: (a)
the average length N = 55 of time series in this
sample is used as if all series were of that same
length; and (b) the length Nj of a particular series is

For this

second approach and for the computation of statistics
of normal independent variables the distribution of
time length Nj of n = 140 stations is given in fig, 1

used as a weight of T for that series,

for a grouped data computational approach.

1 and

are computed by equations 2,19

Average rl-values, variances of r

the variance of ;i

through 2,30 by setting k= 1, These were computed
for each of the three sample series: V, Pe' and

normal independent variables,

33 N = number of years
n =number of stations

Fig. 1 Distribution of the time lengths, Nj » for the

series of the first large sample of river gag-
ing stations (n = 140).
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Table 1 gives the statistics computed for
the first serial correlation coefficient for the three
samples of time series, When Nj- of series is taken

into account for the computation of weighted statistics
of V-series and Pg-series, the same Nj distribution

was assumed for the sample of series of normal in-
dependent variables, Table 1 gives also the equation
which has been used for the estimation of a particular
parameter.

Values in Table 1 show that on the average
the weighted length Nj of series in this first sample

does not give substantially different estimates of
statistics of ry when compared with the values esti-

mated by using the average iength Nm :

Cumulative distributions of first serial cor-
relation coefficient, as well as frequency histograms
of the f. s, c.c. are given in Fig. 2 in cartesian
scales for both annual flow and annual effective pre~
cipitation for 140 stations. )

Figure 3 gives frequency distributions of
the first serial correlation coefficient r, in car-
tesian-probability scales for both annual flow (V)
and annual effective precipitation (Pg). The means

given are simple averages estimated by eq. 2.19.
Distributions of r { for normal independent variables

with series length N = Nm = 55 are given as straight

lines in these scales for two cases: (a) Mean and
variance of ry estimated by moments of eq. 2.2 ;
and (b) Mean and variance of r estimated from
moments of eq. 2,3 by using egs. 2,23 and 2. 27.

It is necessary to stress that many valuesof

r, are negative: 16 (or 11,4%) in the V-series and

1
26 (or 18.6%) in the Pe-series, as it is shown in

Fig.2. Approximate corrections for the water carry-
over from year to year, made in this study, have

thus increased the number of negative ry values for

annual effective precipitation in comparison with that
of annual flow.

Shapes of histograms and curves, (1)
through (4) in Fig. 2, and curves (1) and (2) in Fig. 3
show that frequency distributions in their middle part
are close to the normal distribution, but tails at both
extremes have an appreciable departure from the
normal distribution,

Table 1 shows that the correction of V-
series to obtain Pe-series by approximate values of

the change in carryover AW, [ 1, page 18] decreased




TABLE 1

Statistics of frequency distribution of first serial correlation coefficient for 140 stations of annual flow
(V - series) and of annual effective precipitation (Pe - series), as well as for normal independent variable.

V_- Series Pg - Series Normal Independent Variable
Sratisticy Equation Equation Equation Equation
Used Value Used Value Used Value Used Value
Simple esti-
mate of mean 2.19 0.1748 2.19 0. 1353 2,23 -0.0185 2,2 0
Weighted esti-
mate of mean 2.20 0. 1844 2.20 0, 1336 2,24 -0.01886 2.2 0
Median 0. 1600 0.1150
Simple esti-
mate of vari-
ance 2.21 0. 0354 2.21 0.0303 2,217 0.0178 2.26 0.0176
Weighted esti- '
mate of vari-
Stide 2,22 0. 0370 2.22 0. 0292 2,90 0.0179 2.28 0.0176
Simple esti-
mate of stan-
dard deviation 2,241 0.1875 2 Bl 0.1738 2.27 0, 1335 2.26 0, 1325
Weighted esti-
mate of stan-
dard deviation 2.22 0. 1920 2.22 0.1708 2.29 0.1335 2.28 0.1325
Absolute _ % Absolute
Frequency of I, @ %0 3 W 30 0 7% Wo Wp Frequency of I
25 20 15 10 5 0O : 0 5 10 i5 20 23
1
.80 [
]
70 |
1
.60} |
.80 |
40 |
’ |
.30 |
1
B Mean 0.175
.20 |
0135 T~ Tt ———————————o———7
_!e_a:___i _______ Median 0Q.160
-1or Median 0.115 I
| [
o F=0 I (9,/
-l0f | 1
| 2
=20 I 1
R 20—95 % — o
30 o i 2 11
—40F |
! i
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O 10 20 30 40 50 60 7O 80 90 100 WO 120 [30 I40

Fig. 2

Number of stations n

140):

Cumulative distributions and frequency histograms of the first serial correlation coefficient for the
series of the first large sample of river gaging stations (n =

(1) frequency histogram of the

V-series; (2) frequency histogram of the Pe-series; (3) cumulative distribution of the V-series; and

(4) cumulative distribution of the Pe-series.




the mean value ;1 , estimated by the simple average
;1 . As V= Pe+ AW | and since Pe and AW are

not mutually independent, it is not simple to determine
how much serial correlation in V-series is affected
by each of these two variables. Differences in ry

are given here for V- and Pe-series:

FI(V} - ?1(196) = 0.1748 0. 1354 = 0, 0395 = 0, 040

The weighted means ;1*(V) and r *(P) are alitile

different from the simple average values; in this case

Fl*(V)- FI*(Pe} = 0,1844-0,1336 = 0, 0508 = 0. 051 ,

It can be concluded that a substantial part
of the positive correlation in V-series may be attri-
buted to the changes AW in water carryover from

year to year in river basins in the form of stored
water which is bound to flow out through the river in
subsequent years.

Distributions in Figs. 2 and 3 and compari-
sons of their parameters show:

(1) that the means of r, for V- and Pe-

1 3
series depart from those of normal independent vari-
ables;

(2) that distributions of r { in cartesian-

probability scales for the range 20% - 95% for both

N=55 years

E Fivieo.i7s
Y] “oms -
N

e

— L
~an-
s}
=07k
-on-
Zaa}
T T v e % % WS Wees w5 same
Fig. 3 Cumulative distributions of the first serial

correlation coefficient for the series of the

first large sample of river gaging stations

En = 140) in cartesian-probability scales:
1) V-series; (2) P_-series; (3) normal in-

dependent variables, with the mean 51 esti- |

mated by eq. 2.3 and 2. 23; and the variance
estimated by eq. 2.27; (4) normal independent
variables, with the mean py estimated by

eq. 2.2, and the variance estimated by eq.
2,27; (5) fitted straight line which is parallel
to lines (3) and (4) and passes through the
mean rj(V}; (6) the same as under (5) but

for P -series and rl{Pe}‘
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V- and Pe-series may be approximated by straight
lines of the same slope as the distributions of r 1 for

the corresponding normal independent variable of
equivalent sample lengths;

(3) that distributions of r 1 for V- and Pe-
series are skewed; this should be expected for r -
distributions if the population values of p, were dif-

ferent from zero in the case of normal dependent vari -
ables; and

(4) that some general conclusions about pat-
terns in sequence of annual flow and annual effective
precipitation may be derived from this large sample
of river flow records,

Figure 4 shows r (V) and r (Pe} as

Fisher's z-transforms plotted in cartesian-probabi-
lity scales. It still shows like Fig., 3, that the ex-
tremes of ri-distributions for both V- and Pe-series

depart from normal independent variables with z
estimated by eq. 2,15, p estimated by r,, and

The slope of the straight lines
1/m‘m= 0.135 for Nm= 55,

var z by eq. 2.18 .
in Fig, 4 is sr=

When the first serial correlation coefficient
is estimated by eq, 1.5 or approximately by eq. 1. 10,
the value of Py for a normal independent variable
may be estimated by eq._ 2,23 as ry=-0,0185 for
the mean Nm = 55, or rl* = -0.0194 for the weighted
Nj . The mean of the f.s. c. c, -1:1{\/'} or ;1*{V)

for annual flow (V-series) departs from the corres-

100,
0BOF
080
040
Q20
e}
=020
- 040
"O80T6i 0515 5 0 2030 50 7080 5055 65 945 oae
Fig. 4 Cumulative distributions of Fisher's z-trans-

form of the first serial correlation coefficient
for the series of the first large sample of
river gaging stations (n = 140) in cartesian-
probability scales: (1) z-transform of r, for

V-series; (2) z-transform of r, for Pe-

series; (3) straight line fit to z-transform
of V-series; and (4) straight line fit to z-
transform of Pe-series.




ponding expected values of the normal independent
variables. The difference is a?i(v) = Fi(V) - Fi =
=0,1748 + 0.0185 = 0,1933 = 0,20 for simple means
r,(V) and T Itis ar * =T,(V) -T,* = +0.1844 +
+0.0194 = 0, 2038 = 0, 20 for weighted means

?1*(V) and 'r_-l* . Similarly, the two differences for
Pe-series are Ari(Pe) =r, (Pe) -r, = 0,1353 +
0.0185= 0.1538= 0, 154 and AFI*{PQ) = Fl*{Pe} -

—Fl* = 0.1336 + 0,0194 = 0, 153, with AFl* being
the difference of Fl* values computed by using the

weighted Nj .

The first large sample of river flow re-
cords of 140 stations from several parts of the world
shows that on the average the annual river flows are
serially correlated with the mean value of the f, s, c. c.
approximately given by G 0.20, The annual effec-

tive precipitation (precipitation minus evapotranspira-
tion on a river basin in a year or the net annual water
yield of the atmosphere to the river basin surface) has
an approximate mean value given by Py 0.15,

The water carryover in river basins in the form of
surface and underground storage which will flow out
of the river basin as surface runoff in subsequent
years is responsible for the first serial correlation
coefficient of annual flow being greater than the
f.s.c.c. of annual effective precipitation. Since the
change in water carryover from year to year is deter-
mined in this study in an approximate way [1], the
above average pl—values should be considered also

as approximate values,

Before statistical inference is used to test
whether or not the means Fl(V) and ?1 (Pe} or

r, 1 ¥(V) and ?1 *P,) are significantly different from

the corresponding values of normal independent vari-
ables, the interstation correlation is discussed here
in general terms.

The positive interstation correlation of
concurrent values of V- or Pe-series makes the

effective size, n, of the first large sample of river

flow records smaller than will be the case if these
variables were free of interstation correlation. The
effective sample size, n . represents that number

of stations, a smaller number than 140, which would
contain the same information as the 140 stations which
have significant interstation correlation. The effec-
tive sample, n,. might be said to be independent

of the interstation correlation. The effect of inter-
station correlation is studied quantitatively in the
analysis of the second large sample of river flow
records for stations in Western North America and
the first large sample of precipitation stations (same
continental sampling area).

Assuming that the mean interstation corre-
lation coefficient of r 1 is not significantly different
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from zero, or that ne = 140, the statistical infe-

rence can be carried out for the hypothesis that the

mean values T, (V) andT, (P), or Fi*(V) and
'r'i*(Pe) are significantly different either

from zero or from Fl = -0, 020 of normal independent

variables; in other words, that the differences

Eri(V) = 0,20 and A;t(Pe} = 0.15 are significantly
different from -0, 020 at the 95 % level of significance,

The expected value of B‘l for normal inde-

pendent variables is ?1 = -0.0182 for Nm= 55. The

variance of r, is var = 0.0178, For the 95%

significance level each tail having the total probability

€ = 0.025, the confidence limits about r, are
var r
= i
+
B N TR 8

with t= 1,96 from tables of normal function for
€= 0.025; and n= 140, number of stations, This
gives two limits, 0.004 and -0.040. The values

ol - _ _
ri{V) 175 and rl[Pe)

than the positive confidence limit 0. 004, For the ex-
pected value of Py being zero, then the limits are

0.135 are much greater

+0. 022 and -0. 022, and still -f*j(V) and FI(PE} are

much greater than the positive limit 0, 022,

An opposite approach is also investigated
here. It is assumed that ry is barely significant,

This means that r corresponds to the positive con-

1
fidence limit at the 95 % level of the normal indepen-

dent variables. Since r, = 0, t= 1,96, wvar r, =

= 0.0178, the positive limits are 0. 150 for Pe-series

and +0. 200 for V-series. Equation 2,74 gives the
effective sample sizes: n = 3.5 for Pe-series,

and n= 2.9 for V-series. The fact is that the
river gaging stations of the first large sample are
greatly dispersed around the world. It is unlikely

that the average interstation correlation of r values

is large enough to produce the small effective sample
sizes of 2,9 and 3.5.

By using eq. 2.74 the average interstation
correlation coefficient of r is = (n-ne)fne(n- 1),

For n= 140 and ne = 2.9 and 3,5 respectively, for

V- and Pe—series, the corresponding r values are

0.34 and 0, 28, It is shown later that for Western
North America those two values are much smaller
than 0,34 or 0,28, The effective sample sizes from
r{ for V- and Pg-series must be greater than 2.9 or
3.5, respectively, because the sampling of river gag-
ing stations on a global basis should produce a smal-
ler interstation correlation than the sampling on a
continental basis,




Therefore, the conclusion is that the
average first serial correlation coeificients for V-
series and Pe—series are significantly different from .

zero (or from -0, 020) atthe 95% level of significance
test. However, the absolute measures of serial -
correlation with Fl{V} = 0.175 and Fi(Pe} = 0,135

may be considered as relatively small, though they
are not negligible in many problems, especially in
the determination of overyear reservoir storage
capacities for regulating river flows,

It should be pointed out also, that the first
large sample of river flow records includes many
rivers with unusually large natural storage capaci-
ties (the St. Lawrence River with Great Lakes, USA:

the G&ta River in Sweden; the Neva River in U.S.S.R.;

outflow of Victoria Lake in Africa; outflow of Albert
Lake in Africa; etc.). This fact indicates that sam-
ples of stations from river basins with relatively
small water storage capacities would tend to have
smaller average first serial correlation coefficients,

Great departures in ri{V} and rl(Pe) dis -

tributions or z(V) and z(Pe) -transform distributions

at their tails from the normal function, especially
the high positive r 1 -values or z-values, may be partly

S~
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explained by a biased selection of river gaging sta-
tions and a stress on stations with large upstream
surface storage (mostly large lakes), The rivers
with regulated flow have always attracted economic
development. Hydrologic services usually gave pre-
ference to flow measurements on such rivers in
many countries at an earlier period of streamflow
gaging. This bias in the first large sample will be
more evident through the analysis of correlograms
for V- and Pe-series for several rivers with long

flow records,

3. Frequency distributions of other serial
correlation coefficients. Distributions of only four
other ry coefficients, namely rz, r3, Ty and Tgs
are presented and discussed here for both V-series
and Pe-series. They are computed for open time

Fl

series by eq. 1.10. Figure 5 shows these four dis-
tributions in cartesian-probability scales.

Table 2 gives the estimated values of ;2
through ;1 1 by eq. 2,19, or by average values
T through Fl - The equations used for estimation

2
of a particular statistic are also given in Table 2. For

the weighted estimates of means

Fz, r3, r'4, andT

5)

1 L [ |

051 2 5 0 20 40 60 80 9095 96 %09
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Fig. 5 Cumulative distributions of the serial correlation coefficients of Tys T3, Ty, and rg for the

series of the first large sample of river gaging stations (n=140) in cartesian-probability scales:
(1) V-series; (2) Pe-series;.and (3) normal independent variables with py zero and the variance

estimated by eq. 2. 27,
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are given, as determined by eq. 2,20, Both the sim-
ple and weighted estimates of variances for Ty Ty

r4, and r_ are computed by eq. 2,21 and by eq. 2,22,

5

respectively. For the normal independent variable

and its Ty Ta Ty and ry distributions as given in

Fig. 5, the following statistics are used: ;k = 0, and
_ 1 _ . _

K N ¥z ° 0,0175, with Nm = 55, and

with the stafidard deviation s(r,) = 0.132,

varr

Figure 5 and Table 2 showthat the depar-
tures of distributions between V- and Pe-series on
one side, and normal independent variables, on the
other side, for r, through r 1y are relatively small.

Taking t_}_;e expected value of normal independent vari-
ables, Ty -0. 0185, then the differences Ark of

estimated rk- values for V-series and P -series,

and rk for the normal independent varlables rounded

to three decimal places are:

. V-Series Pe-Series

.ﬁrz 0,033 0. 022

Ar, 0. 028 0. 026

Ar4 0.033 0,030

Ar5 0. 064 0,064

Ars 0,022 0, 023

&r7 -0,007 -0, 008

&ra -0, 002 -0, 002

Arg -0,022 -0, 018

Ario -0. 006 -0. 006

Ar‘“ 0,016 0.017
The greatest difference is for ;5 , and it is 0. 064.
Distributions of Ty Ta Ty and ry are close to those
of normal independent variables, except that there is
a tendency for the standard deviation of distributions

TABLE 2

Statistics of frequency distributions of serial correlation coefficients,

ry, rz, r4, and rs for 140

stations  of annual flow (V-series) and annual effective precipitation (P, - series), as well as
simple estimates of mean for. Tgs Tgs T, Tgr T1p and Ty
V - Series Tg = DErlies
ry Statistics Equation Equation Equation Equation
estimated Used Value Used Value Used Value Used Value
Mean 2.19 +| 0.0146 2.20 0.0178 2.19 0. 0036 2,20 0. 0004
"2 Variance 2,21 0.0228 | 2,22 0.0231 2,21 0.0210 | 2.22 0. 0204
. Mean 2.19 0. 0097 2.20 0.0101 2.19 0.0070 | 2.20 0. 0029
g Variance 2.21 0.0253 2,22 0. 0259 2.21 0.0248 2.22 0.0233
Mean 2,19 0, 0150 2.20 0.0186 2.19 0.0110 2.20 0. 0164
g Variance 2.21 0.0224 2,22 0.0214 2,21 0. 0204 2.22 0.0189
ry Mean 2,19 0. 0460 2,20 0. 04086 2.19 0. 0450 2.20 0. 0357
Variance 2,21 0.0323 2,22 0.0306 2.21 0.0313 2,22 0. 0295
"6 | Mean 2.19 | 0.0039 2.19 0. 0041
™7 | Mean 2.19 |-0, 0251 2,19 -0, 0269
"8 | Mean 2.19  |-0,0207 2.19 | -0.0203
"9 | Mean 2.19 |-0.0407 2. 19 -0. 0370
10| Mean 2.19 |-0.0246 2.19 | -0.0259
"11| Mean 2.19 |-0.0027 2.19 |-0.0014
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of V- and Pe—series to increase with an increase of

k, while that of normal independent variables is con-
sidered to be constant for a given N and to be inde-

pendent of k. This departure of standard deviations
is greatest for rs, similar to r5, and it may be con-

sidered as the sampling fluctuation of an independent
time series with several ry values.

There is no indication that ;“ for k= 11,

or the approximate time lag of average sun-spot peaks
is significantly different from zero.

4. Average values of serial correlation
coefficients. Figure 6 gives the average values of
serial correlation coefficients or mean values of r

k
as they change with k, from k= 1 to k= 11, for both
V-series and Pe-series. It is quite clear that T

1
values are significantly different from all other values,
The other conclusion is that the difference, Fk(V) -

-?k{ Pe}, decreases with an increase of k, and this is

evident especially from k= 1 to k= 5, After k= 5,
the difference between the two series is small.

The estimate of ;k for Nm= 55 is also

plotted in Fig. 6, with Ep, = F,_= -0.0185. The

k
variance of r, is 0,0178. By using eq, 2.30 and

k

n= 140, the variance of Ty is 0.000125. This gives

1T =3

020

015

010

005

~0.0185 for normal independent variables.

the standard deviation of T, as s(;k) = 0,0112, The

k
confidence limits at 95% level for ?k of normal inde-
pendent variables are ;k = 0,0034 and ;k =

= -0.0404. Assuming that re values are not inter-
correlated for stations takenpairwise, or n = e 140

for this sample, all first five values, ;1 through ;5,

for V-series are significantly different from ;k of
normal independent variables at the 95% level of signi-

ficance, although rz, T r4 are not very far from

the positive confidence limit. =
;3 may be considered as not significantly different at

For Pe-serles T. and

the 95% level from the r, -value of normal independert

variables. Values of ?; 1V) and FifPe} are evidently

significantly different from the corresponding value of
Both

r E|(V) and Fs(Pe) are above the positive confidence
limit at the 95% level, but much below r 1(V) and
ri(Pe)' The values rs(V) and rS(Pe) may be con-

sidered as sampling deviation because 5% of T, -values

should be on the average outside the confidence limits.

Assuming that there is a positive mean in-

terstation correlation between rk-values, or as an

A Nl O5% Ne=50

95%, N=140__

E(§o)=- 00135 )

- _®?_§5§n$o_ .

-005 95%, Ne=50

o | 1 | |
0.101

Fig. 6

I 1 1 I 1k
7 8 9 10 "

Average values of the serial correlation coefficients (Fi through ?1 1) for the series of the first

large sample of river gaging stations versus the lag k: (1) V-series; (2) P -series; (3) expected

value of pk estimated by eqs. 2.3 and 2, 23;(4) difference r.\.rk = rk(V)

k(P ) ; (B) confidence

limits at the 95 percent level for normal independent variables; and (6) confidence limits for normal

independent variables with n, =

18

50 (assumed effective sample size).



approximation, a positive correlation of annual flow
effective precipitation among pairs of 140 stations,
and assuming that the effective sample size n = 50,

the confidence limits at the 95% level of _rk would be

% 0.0181; and r, = -0, 551,

rl(V), rl(Pe), rs(V}, and r5(Pe) are outside the con-

r In this case only

fidenc_e limits. _It is concluded here, as previously,
that ri(V} and rl(Pe} are significantly different from

the corresponding statistics of normal independent
variables.

The water carryover for some river basins
is greater than one year. Therefore, the difference,
?Z(V) - rz(Pe}, may also be considered as significantly

different from zero. The large values of _r5(V) and
Fa(Pe) may be considered as sampling departures from

the expected value of normal independent variables.
This may be so even though the probability of their
exceeding a positive confidence limit is 10% (one in
ten values, FZ through Fl 1) instead 5% as the confi-

dence level implies,

The sequence of T in Fig. 6, and especially

k
the differnce Afk = ?k(V} - Fk{ Pe), which is also plot-

ted in Fig. 6, leads to the conclusion that on the aver-
age the linear autoregressive schemes may be applied
to the relationship of V-and Pe- variables, Itis

shown later that the first order or the second order
linear autoregressive schemes for the patterns in

sequence of V-series may well fit some typical cases,

r(v)

5. Correlograms of individual rivers.
Figures 7, 8, and 9 give correlograms of individual
river stations of both the annual flow and the annual
effective precipitation, Usually the upper graph (Fig.
7) or the left graph (Fig.8) gives the correlogram for
the V-series, and the lower graph (Fig.7) or the right
graph (Fig.8) gives the correlogram for the P_-series.

The confidence limits for normal independent variables
at the 95% level of significance, estimated by eq. 2. 10,
are also given in both graphs, As each correlogram
refers to a series with N usually different from Nm

used in the graph, the confidence limits for a given
Nm should be considered here only as indications of

correlogram fluctuations for normal independent vari-
ables.

. In using eq. 2.10 the value of N in that eqg-
uation has been replaced by N-k or by the number of

correlated pairs in the computation of rk-values.

Thus the confidence limits expand slowly as the lag k
increases, Confidence limits at the 95% level for
normal independent variables are given for two values
of sample size (in Fig. 7): N= 150 (the Gota, the
Rhine), and N = 120 (the Danube). The expected
means of r for normal independent variables as

‘given by eq. 2.7 are not plotted in Fig. 7.

Figure 7 gives correlograms of V-series
and Pe-series for four rivers with longest records:
the Rhine River at Basle, Switzerland (150 years); the
Gdta River at Sjortop-Vinersburg, Sweden (150 years);
the Nemunas River at Smalininkai, Lithuania, USSR,
(132 years); and the Danube River at Orshava, Roma-

nia (120 years). The number of computed rk-values

e — ~L(95%) tor N=150 -- —
=

XL X
&

& /‘Nm/ /"}x

1 \
-01 \ “if&}’z{--f"{// : ﬂ’/\‘w
a2 T 7 T LESRI R NB0 T gs%) for N=2O—"
-03
GOTA RIVER NEMUNAS RIVER ——-——
R I B - S - I R

Fig. 7

Correlograms of the four rivers with longest records: the Gdta River (N = 150), the Nemunas River
(N = 132), the Rhine River (N = 150), and the Danube River (N = 120).

The upper graph refers to the

V-series, and the lower graph to the P -series. Two confidence limits at the 85 percent level are

given for normal independent variables for two lengths: N = 150 (max) and N = 120 (min).
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Fig. 8 Correlograms of 28 individual series from the first large sample of river gaging stations (n = 140) in
groups of four series are shown. The left graphs refer to the V-series, and the right graphs refer to
the P -series. For each of the 7 groups, three confidence limits at the 95 percent level for normal

independent variables are given for the following lengths of series; N = 150, N = 100, and N = 50,
The expected value of Fk is given for the average length Nm of the series for each group of four

correlograms, as computed by eqs. 2. 3 and 2, 23, The groups are from these regions: (I) USA;
(II) USA; (III) USA; (IV) Europe; (V) Europe; (VI) Australia; and (VIII) Africa. Following are listed the
28 stations, their period of observation, and the length of their series,

(1) River Piscataquis near Dover-Foxcroft, Me., 1902-1956 (54); (2) River Susquehanna, Harrisburg, Pa.,
1880-1957 (67); (3) Potomac River, near Point of Rocks, Md., 1896-1957 (61); (4) French Broad River near
Asheville, N. C., 1895-1957 (62) (5) Tennessee River neap Chattanooga, Tenn., 1874-1956 (82); (6) Kanawha
River, near Kanawha Fall, W, Va., 1877-1957 (80); (7) Wolf River near New London, Wisc., 1896-1957 (61);
(8) Fox River, near Berlin, Wisc. , 1898-1957 (59); (9) Mississippi River, near Keokuk, Iowa, 1878-1957 (79);
(10) Mississippi River, near St. Louis, Mo., 1861-1957 (96); (11) Missouri River, near Fort Benton, Mont. ,
1880-1955 (65); (12) Missouri River, near Sioux City, Iowa, 1897-1955 (58); (13) Dnieper River, at Dnieperpe-
trovsk, USSR, 1881-1955 (74); (14) Volga River at Gorkii, USSR, 1877-1935 (58); (15) Neva River, at Petro-
krepost, USSR, 1859-1935 (76); (16) Kama River, at Berczniki, USSR, 1881-1938 (57); (17) Thames River,
near Teddington, England, 1883-1954 (71); (18) Danube River, at Vienna-Mussdorf, Austria, 1893-1957 (64);
(19) Indals River, near Ostersund, Sweden, 1893-1957 (64); (20) Riul Mures River, at Arad, Romania, 18 76-
1955 (79); (21) Goulburn River, near Murchison, Victoria, Australia, 1881-1954 (73); (22) Kiewa River, at
Kiewa, Victoria, Australia, 1885-1957 (72); (23) Owens River at Wangaratta, Victoria, Australia, 1886-1948
(62); (24) River Murray at Jingellic, Victoria, Australia, 1890-1957 (67); (25) Nile (Second Half), at Aswan
Dam, Egypt, Africa, 1903-1955 (52); (26) Niger River at Koulicoro, Africa, 1906-1957 (51); (27) Outflow from
Lake Victoria, Nile Basin, Africa, 1898-1952 (54); (28) Lake Albert at Mongalla, Africa, 1904-1952 (48).
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was N/4 so that for these four rivers there are alto-
gether 137 rk—va.lues.

By the definition of 95% confidence interval,
seven rk~values (or 5%) for the correlograms of four

rivers should be outside the confidence limits, if the
four series would be serially uncorrelated. In the
case of the Pe—series there are nine values of rk

which are evidently outside the confidence interval
for N = 150, and five values for N= 120. The aver-
age is seven, or 5,2%, which approximately satisfies
this condition of 5%. Neglecting the r, -values for the

Gota River and the Nemunas River, for V-series
there are also 9 values of T which are evidently out-

side the confidence limits at the 95% level for N= 150,
and five values for N = 120, or the average of seven
values, This gives 5. 2% of values outside the confi-
dence limits, which also satisfies the condition of 5%,

The r -value of the Gota River for V-series

may well be explained by the large lake storage of
that river resulting in water carryover from year to
year. The significant difference between rl{V) and

rlfPe) can logically be attributed to water carryover,
The rl-value of the Nemunas River for the V-series

eventually may be explained by some inconsistency in
the data as well as by water carryover. The fact is
that the flow rating curve obtained in the second half
of the nineteenth century has been applied to stage
observations of previous years to derive the river
flows. It might be that the natural fluctuations of
river bed elevation produced some inconsistency in
data, when the above method of obtaining the river

flow was applied, The difference between r values

of V- and Pe-series for the Nemunas River is also

significant, so that water carryover may also be res-
ponsible partly for the significantly positive r, value
of the V-series.

It may be concluded from the results given
in Fig. 7 that the four rivers for both V-and P_-series
have sequences which do not depart significantly from

independent time series except for r values in two

cases, This fact supports the hypothesis that a linear
moving average scheme may well be fitted to describe
mathematically the dependence of annual flow to an-
nual effective precipitation for these rivers with long
records. The first order autoregressive scheme for
the time dependence of V-series with rg= rq" seems
less appropriate for the Gota and Nemunas River in
describing the relationship of V-and Pe-variables.

For the Gota River and its V-series the
actual values of s,c. e, are: r1 = 0,461; r2=-0. 005;
-0.095. Using the above relationship r =
and taking r, = 0,461, the other two values

= 0,213; and r3= 0,098, The difference

andr =
i k
Ty

should be rz

between these two values and the actual values are
Ar'z =0.213+ 0,005= 0, 218; and Ar3 = 0,098 +
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+0.095= 0,193, The average is about 0, 205, and
they are not likely to be explained only by sampling
fluctuations in r, and r, values. The second order

linear autoregressive scheme is fitted to the patterns
in sequence of annual flow of the Gdta River, because
the actual r { is positive, while the actual value r,

is negative, Using eq, 2.56 and the computed values
ryandr,, the estimates of a, and a, for the Gita

River are ex1 = 0.586; and a, = -0.277. The condi-
tion that a, < - aﬁxi is satisfied because a_ =

2 2
= -0.277< -a,“/4 = -0.086.

The angle 6 in eq. 2.53 is given by the
expression 2 sin 0=4/4+ a2 2/ 3. al "az , and in this case

= 56°% so that the positive values of Bk are only

for k < (% - 1), or k< 2.22., For this river there
are only three positive values of Bk: namely, j 0 ,81,
and B?_ . Using eq. 2.53, ﬁi = 0.51880; and

B, =0.0535 Bg « Therefore, the main carryover is in

the first year (k = 1). In the second year (k = 2) the
carryover is very small. In other words, the bj-

coefficients are positive and significantly different
from zero only for j =0, 1, and 2.

The time dependence model for this river,
therefore, is

x.= 0.586 x. -0,277 x. _#+ €.
1 i-1 i= i

2

<2 - 2 _
As ei Boyi , and as Eyi 0, and Eyi 1, the
estimate of ,802 by eq. 2,57 is boz = 0,728, In the
above mathematical model € is a normal indepen-
dent variable with mean zero and variance 0,728 .

K -1

As x = , with -IE = 1 and standard deviation

i s
of annual flows given in modular coefficients being
equal to Cv , then for s = Cv = 0.182 [1, Appendix

1], the following model in modular coefficients is
applicable to the Gota River:

Ki= 0, 586 Ki- -0, 277 Ki— + 0.182 €i+ 0.691 3.2

1 2

Replacing 0, 182 €+ 0.691 by n - variable, the
expected mean of r,li is 0,691, and the variance is

0,1325, or

K.= 0,586 K, -0,277 K., _+ n.. 3.3
i i- i-2 i

1

In order to obtain absolute annual flow the Ki—value

should be multiplied by the mean V in m*/sec, or




in cfs. If a normal standard variable t is used,

1

A probability statement can be made about
the annual flow of the next year, if two limits for 1t
By using t, and tz from

have been selected.

tables of normal function for a given probability that
a value t falls between t

and KZ may be computed from eq. 3. 4 and the corres-

ponding values t A

Using eq. 2,55 and a1 = 0,586, a_= -
-0.277, r = 0.461 and r_= -0,005 for the G&ta

1i
River, the values r

given in Table3. Also the computed values of r '

through rq for the observed series of 150 years are
given, as well as their difference, Ar.. Table 3
shows that the differences for r,
relatively small, and that r
same negative sign.in both the computed T values

by eq. 2.55 and the computed ry values from the
actual series, Therefore, the second order linear

autoregressive scheme gives a good fit for the pat-
terns in sequence of annual flow of the G&ta River,

Serial correlation co

of the G6ta River, computed by the second order lin-
ear autoregressive scheme of eq. 3.1 and by using
eq. 2.55, the computed rk-values for the actual

K.,= 0,586 K. , -0,277 K,
i-1 i-

2

i

1

and tz‘

2

{ through Ty

3 Ty

TABLE 3

efficient ry for the annual flows

series, and their differences.

+ 0,1325t+ 0,691 3.4

and tz , the limits K1

are computed and

through r_ are

and r5 have the

2

k
9

Computed T Computed T

by egs. 2.55 from actual
k and 3.1, series Difference
1 0. 461 0.461 0.000
2 -0, 005 -0.005 0.000
3 -0, 133 -0.095 -0,038
4 -0, 077 -0, 057 -0,020
5 -0, 009 -0.048 0. 039
6 0,016 -0.010 0,026
7 0.012 -0,018 0.030
8 0, 002 -0,016 0.018
9 | -0.002 -0, 055 0.053
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For the Nemunas River and its V-series the
computed values of s, c.c. are: r = 0. 185; r= -
-0.015 and ry= -0.077 . Using eq., 2,50 and r, =
= 0,185, the other two values are rz = 0,034 and
ry= 0.006. The differences are Arz = 0,034+ 0,015
= 0.049 and Ar3 = 0,006 + 0.077= 0,083, They are

not significant either as large or small values, so
that it would be difficult to conclude which of the two
models, eq. 2.39 or eq. 2.52 would better fit the pat-
terns in sequence of annual flows. The fact that the

computed values or r, and r3 are negative, while

€q. 2.39 should produce positive values, gives some
advantage to the second order linear autoregressive
scheme,

The values of Ty Ty, and r, for the V-
series of the Rhine River and the Danube River are
small. No conclusion can be made about the best
mathematical model which would fit the patterns in
sequence, if the series have a relatively small time
dependence,

Figure 8 shows correlograms for 28 river
gaging stations: 12 stations (No. 1-12) in first three
groups of four stations for U.S,A., 8 stations (No, 13
-20) in fourth and fifth group of four stations for
Europe, 4 stations (No, 21-24) in Australia (Victoria
State) in sixth group of four stations, and 4 stations
(No. 25-28) for Africa in seventh group of four sta-
tions. The left graphs give correlograms of V-series
and the right graphs those of Pe-series. The stations

for U.S5.A. are mostly in the eastern part of the
country. The analysis of the second large sample of
river gaging stations will deal with correlograms of
selected stations in the western part of the country,

Figure 8 has three confidence intervals at
the 95% level for normal independent variables and
for three sample sizes: N= 50, N-= 100, and N =
= 150, The expected value Fk of normal indepen-

dent variables is given for each group of stations for
the average sample size Nm of groups of four sta-

tions. Equations 2, 10 and 2. 23 are used for the com-
putation of confidence limits and expected Fk , res-=

pectively, with N replaced by N-k and Nm re-
placed by Nm-k.

The correlograms of the 12 stations in the
U.S.A.(1 through 12 in Fig. 8) usually show a
greater fluctuation of rk~values around the expected

values at their end. This is due to increased sampling
variance with a decrease of N-k as k increases. In
general, most correlograms are confined well inside
the confidence interval at the 95% level for the corres-
ponding sample size and for normal independent vari-
ables, except for rt-values.

The correlograms of the 8 stations in
Europe (13 through 20 in Fig. 8) also are well inside




the corresponding confidence intervals at the 95% level
for normal independent variables, The correlograms
of the 4 stations in Australia (21 through 24 inFig..8)
are well within the corresponding confidence intervals
with the same characteristics as the previous groups.
However, correlograms of the 4 stations in Africa

(25 through 28 in Fig. 8) show some departures from
the expected correlograms of normal independent vari-
ables. Lake Victoria and Lake Albert stations show
fluctuations of the correlograms close to the confi-~
dence limits while the Nile River at Aswan Dam has a
relatively important fluctuation also very close to con-
fidence limits. The characteristics of these correlo-
grams indicate that a second order linear autoregres-
sive scheme may be fitted to the patterns in sequence
of annual flow and annual effective precipitation for
these three gaging stations.

The Niger River has the most unexpect ed
correlogram in comparison with that of normal inde-
pendent variables, Its correlogram decreases con-
tinuously for the V-series from a high value r, =

i
= 0.555 to alow value r, = -0.533, The same holds

1
for the Pe-s eries. A logical question is whether this

type of correlogram is a product of regional sampling
or not. Has it been produced by pure chance in the
past and is not expected to be produced in the future?
Or is it related to some specific climatic conditions
in Central Africa and will be produced again in simi-
lar patterns in the future?

This problem of the Niger River is impor-
tant, but only a careful study of all available data
(and also of data quality) in the river basin and around
it would produce a reliable answer to the above ques-
tions. The long range precipitation stations in the
region may offer the clue to whether the cyclic move-
ment of the correlogram is a pattern or a chance pro-
duct.

Although it seems that the first three stations
(Lake Victoria outlet, Lake Albert outlet, and the
Nile River) have a first damping oscillation of i1,
20, and 8 years respectively, and the Niger River at
Koulicoro has half oscillation of 12 years (or full first
oscillation of 24 years), this may not have a signifi-
cant relationship with average time lag between sun-
Spot peaks, The series length of N = 51 for the
Niger River is too short to draw any reliable conclu-
sion about a potential cycle of 24 years. In the case
of correlograms of the first three stations the damp-
ing is rather fast, These types of correlograms may
be produced by a special type of moving average
scheme, especially, since the large lakes upstream
from those three stations and the evaporation from
them may create a particular type of moving average
scheme,

The St. Lawrence River at Ogdensburg, (N,
Y., U.8.A.) is treated as a particular case of water
carryover because of the large effect of the Great
Lakes. Observations from 1860 to 1957 (97 years)
give correlograms for V- and Pe—series which are

plotted in Fig,9. While the correlogram of Pe-
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series is well within the confidence interval at the
95% level for normal independent variables, the cor-
relogram of V-series has positive values for the first

eleven I, » and most of them (r , through rg) are

above the positive confidence limit, The shape of this
correlogram points toward the conclusion that either
the first order linear autoregressive scheme, eq.
2,39, or a moving average scheme of special type
may be the most appropriate mathematical model for
describing the patterns in sequence of annual flow.
Figure 9 gives the first order linear autoregressive
scheme P ™ Py » with pl{V) estimated by

ri(V} = 0,705,

In order to see how well the first order
linear autoregressive scheme P= P fits the series

of annual flow of St. Lawrence River, a least squares
fit of this model is carried out. Minimizing the sum
k

(b, - r?
zl pl k E)

for k=1, 2, ., 17 gives

P, = 0.785. By giving a larger weight to the first

values of res @ least squares fit to the log r is
k

k

used, in which case the sum Z(k log Py ~logr, 2
i
is minimized with Py = 0.767.

Figure 10, upper graph, gives the observed
correlogram, and the correlograms of P Py

where P, 1s estimated in three ways: (a) as obser-
ved value of Py = rl(V) = 0.705; (b) by least square
fit to r,, and Py = 0.785; and (c) by least square
fit to log r,. and Py = 0.767, The lower graph of
Fig. 10 gives the differences Ark between the correlo-

gram of observed series and the first order linear
autoregressive scheme in three cases: (a) py = 0.705,

L(95%s)

@

Correlograms of the St. Lawrence River at
Ogdensburg, New York: (1) V-series; (2) B =
series; (3) first order linear autoregressive
scheme Py =Py . Wwith p, estimated by
the actual value ry = 0.705; and (4) confi-

dence limits at the 95 percent level for nor-
mal independent variables with N = 97,




(b) py = 0.785, and (c) py = 0.767. This last graph

also has confidence limits at the 95% level about the
expected mean of normal independent variables with

N=97, or Fi = -0.0104, and limits computed by
eq. 2,10 of +0.156 and -0.177 . Considering Ark,

after the correlogram of the first order scheme has
been deducted, as the correlogram of an independent
series, the test shows that for Py 0.767 and I

= 0.785 these differences Ark may be considered

as being those of normal independent variables, be-
cause they are well within the confidence limits at the
95% level for all values of r  through r

17..

The model of the first order linear autore-
gressive scheme is, therefore, applicable to the
series of annual flow of the St. Lawrence River,
Assuming t to be a normal standard variable (0, 1),

+ th"Ji—piz -I-l—pl, or for Cv=0.037

[1, Appendix 1], and Py 0,767

Ki= 0,767 Ki-1+ 0.0557 t + 0,233 3.5

1andt2,

the probability of occurrence of Ki within these limits

with K, = Vi!V . For given values of t

may be obtained from tables of the normal function,
and K1 and Kz may be obtained from the above

equation.

Figures 9 and 10 show that the water carry-
over from year to year in the Great Lakes and'in the
other parts of the St, Lawrence River basin is evi-
dently responsible for most of the positive serial

. . lation. This is clear from the large positive
< =tV 1-p % , sothatthe Sonrs g
op e 29 1s €1 Rl 0 e initial ten Ty values, and the large length k of
model in modular coefficients becomes Ki = PlKi- { + | positive r, values.

k

L{95%)

Fig. 10 Correlograms and their differences for the St. Lawrence
River at Ogdensburg, New York. Upper graph: (1) V-
series; (2) first order linear alfctoregressive scheme,
with Py estimated in Pr = Py by the actual value

B 0.705; (3) first order linear autoregressive scheme

with p, estimated by least square fit to the r, values of

k ; and (4) the same as under (3) but with the fit of
Lower graph: (5) ex-

Pk ~ Py
_ k

r, to lag r) values of Py = Py

pected value of Py » estimated by egs. 2.3 and 2. 23 with

N = 97; (6) difference ar) of correlograms (1) and (2);

(7) difference ary of correlograms (1) and (3); (8) difference

ar, of correlograms (1) and (4).

k
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D. ANALYSIS OF THE SECOND LARGE SAMPLE OF

RIVER FLOW AND THE LARGE SAMPLE OF PRECIPITATION

1. Simultaneous analysis of flow and
precipitation. The first large sample of 140 stations
of annual flow records has been analyzed simultaneous
ly for two series, annual flow and derived anmual
effective precipitation. The second large sample of
annual flow for 446 river station records (Western
North America) is also analyzed simultaneously for
annual flow and derived annmual effective precipitation.
In addition, the large sample of annual precipitation
for 1141 stations which covers the same area (Western
North America), is analyzed simultaneously with
annual flow and derived annual effective precipitation.
For a detailed description of these two samples see
PartI [1, pages 8-9 and 18-21].

The second large sample of river flow
records has been treated in such a way that when two
or more stations are situated on the same stream, all
flow that has been previously measured upstream of a
station has been subtracted from that station, In this
way the large interdependence of annual flow and
annual effective precipitation between the upstream
and the downstream stations has been substantially
reduced.

The study of patterns in simultaneous se-
quences of annual flow, annual effective precipitation

and annual precipitation at the ground in a large

gg[

FN=

region will thus give an insight into different river
basin factors which are responsible for the depen-
dence obtained in the particular type of time series.

Two parallel cases of investigation for V-
series, Pe-series, and Pi-series (annual precipita=

tion at the ground) are investigated: (a) all annual
values available are used whether the record is con-
tinuous or not; in this case N. , the record length,

changes from station to station; and (b) the longest
continuous period common to all stations is used
which includes the years 1931-1960, a record of

N = 30. The objective in investigating these two
parallel cases is to study the influence of the length
of time series on conclusions derived. The first
case will give more reliable results than the second
case, since the average sample size is greater in the
first case, namely N_ = 37 years for the second

large sample of river flow records for 446 stations,
and Nm = 54 years for the large sample of homo-

geneous data of annual precipitation for 1141 stations.

2. Fre?uency distribution of the first serial
correlation coefficients. The distributions of the
f.s.c.c., computed from all data available at a sta-
tion, are plotted in Fig. 11 on normal probability

N (V=37
N (Pe)=37
N,.nEP;)-‘M

T (R)=0181—

1 [rws0w?
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Fig. 11 Cumulative distributions of the first serial correlation coefficient for the series of the second large
sample of river gaging stations (n = 446) and for the series of the large sample of precipitation gaging
stations (n = 1141), both in Western North America on cartesian-probability scales: (1) V-series
(annual flows); (2) Pe-series (annual effective precipitation; (3) Pi-series (annual precipitation at the

ground); (4) normal independent variables, with the mean 51
variance estimated by eq. 2. 27, both with N

= 37 which corresponds to V- and Pe-series; (5) nor -

mal independent variables, the same as under (4) but with the mean Et estimated by eq. 2.2,, and

the variance by eq. 2.27; (6) normal independent variables, the same as under (4) but with N, = 54

which corresponds to P, -series; and (7) normal inde

Nm = 54 which corresponds to Pi-series.

25

estimated by eq. 2.3 and 2. 23, and the

pendent variables, the same as under (5) but with



paper. The distributions plotted are for V-series,
Pe-series, and Pi—ser-ies, as well as for the normal

independent variables with N, = 37 (which corres-
ponds to V- and Pe-series) and Nj = 54 (which cor-
responds to Pi-series]. In both of these two cases,
?1 and s(ri] for the normal independent variables
are computed by moments from eq. 2.2 and eq. 2.3,

The average values of r
cases.

| are also given for all

In the range of probability from 2.5% to
97, 5%, a straight line may fit the r, -distribution of

V-series, Pe-series, and Pi'-series. These straight

lines are approximately parallel to the straight lines
which represent the ri-distributions of normal in-

dependent variables.
Assuming that the moments of eq. 2.3 for

normal independent variables approximate well the
case when r { is computed by the approximate ex-

pression of eq. 1. 10, then the differences between
various ry -values, ry denoting the case of normal

independent variables, are

aTy(V) = 7,(V) - T; = 0.197 +0.028 = 0. 225

Mi(Pe} = rl{Pe] - T, =0.181 +0.028 = 0. 209
f.\ri(Pi) = rl(Pi) -7, =0.055+0,019 = 0.076

The above ?1 -values have been computed by simple
average procedure or by using eq. 2.19 for V-, Pe-,
and Pi-series, and by eq. 2. 23 for the normal inde-

pendent variables, because it was shown on the exam-
ple of the first large sample of flow records that
differences between the simple and weighted means
are not substantial when sample sizes, Nj , are

different,

For Western North America, the difference of

;1 for V- and P _-series is

?i(v) -?1(138) = 0,225 - 0,209 = 0,016,
This indicates that a part of the positive correlation
in V-series is produced by water carryover in surface
and underground storage in the river basins which is
bound to flow out in following years. Similarly for

Pe- and Pi-series the difference is

ri(Pe) = rl(Pi} = 0,209 - 0,076 = 0,133,
A substantial portion of the positive serial correlation
in Pe-series is produced by evaporation (and evapo-

transpiration) from the water carryover of previous
years which is evaporated (lost out of the basin as
evaporation) in successive years. Because

V= Pe + aW, with AW being the difference in water

Pi = Ei , with Ei
being the annual evaporation, and because aW and
Ei depend on the water carryover from previous

carryover for each year, and Pe =

years, these two magnitudes AW and Ei are the

most important factors in producing the time depen-
dence: both of them for V-series, and Ei only for

P -series.
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While the first large sample of river flow
records from many parts of the world has shown that
the carryover in the form of surface and underground
storage {which flows out in successive years) account-
ed for a substantial portion of the positive serial cor-
relation in V-series, the second large sample shows
a relatively smaller impact of this carryover on the
dependence of the V-series. The annual evaporation
and the annual evapotranspiration {Ei) result as the

major causal factors for time dependence in both the
V- and Pe-series. Since Western North America

encompasses a large arid and semi-arid area where
the evaporation and evapotranspiration represent a
large portion in the water balance of river basins,
this result of a great effect of evaporation and evapo-
transpiration on time dependence of annual flow and
annual effective precipitation should be expected.

It should be pointed out that the water carry-
over of previous years can be disposed of in next
years in two ways: (a) by flowing out of river basin
through surface runoff and through underground out-
flow; and (b) by flowing out into the atmosphere
through evaporation and evapotranspiration. From
the point of view of explaining the time dependence in
a series of annual flow these two means of carryover
depletion make no substantial difference except that
different mathematical models, based on the different
physical processes, may fit approximately these two
manners of water outflow from river basins.

The fact stressed above that dependence in
time series decreases substantially from annual flow
to annual effective precipitation and from annual
effective precipitation to annual precipitation at the
ground is the main and the most significant general
result of this study.

Similarly as in Fig. 11, Fig. 12 gives the
distributions of the f.s.c.c. (ri) on normal probabil-
ity paper for V-, Pe-, and Pi-series for simultan-

eous records of 30 years (1931 - 1960) at all stations
as well as for normal independent variables, with ry

computed by the first moment of either eq. 2.2 or of
eq. 2.3, or with r, =0 and ry= -0.034, respective-

ly. In this last case for T,
ar (V) =7,(V) - T, =0.163+0.034 = 0.197
ArlfPe) = rj(Pe} -1, = 0,146 + 0.034 = 0.180

at,(P) =T,(P,) -~ T, = 0.028 +0.034 = 0,062

The difference between ?1{ - ) of V- and Pe-

series are

r (V) -Fi(Pe} = 0,017

and
r,(P) - T,(P) = 0.118 .

The comparison between the two alternatives,
longest records and simultaneous and continuous but
shorter records, leads to the following conclusions:

(a) The absolute values of ?1(V}, ?1(Pe}.
and ?l(Pi) are somewhat smaller for 30-year record
than for longest records;

(b) The effect of water carryover and



evaporation on time dependence is shown to be approx-
imately the same, regardless of the average length of
time series and simultaneity of flow observations;

(¢) The fitted straight lines to r, ~distribu-
tions for V-, Pe-, and Pi-series are similar in the
case of 30-year record, except that the slope of r-
distribution of Pi-series is somewhat smaller than

that of r, -distribution for normal independent vari-
ables of the same time series size of N = 30,

3. Frequency distribution of other serial
correlation coefficients. Apart from ry the distri-

butions of serial correlation coefficients, r_ through

2
r,,, are given in Fig. 13 for all years of observations

and for the following variables: (1) V, (2) B (3) P
(4) normal independent variables with Nm = 37, and
(5) normal independent variables with Nm = 54, Case
(4) serves for the comparison with V and Pe vari-
ables, and case (5) with the Pi variable, Similarly,
Fig, 14 gives distributions for rk-values with

k=2, 3, ..., i1 for 30 years of observation (1931-
1960) and for the following variables: (1) V, (2) B

(S)Pi , and (4) normal independent variables with
N = 30,

Both ?k and var r, for normal independent

variables have been computed by using the average
length of time series. However, in computing the

1.0

covariance of xi and Xtk only (N-k)-values have

been used.

The objectives of presenting Figs, 13 and 14
in this investigation are: (a) to show that the distri-
butions of ry for V, P‘e , and Pi become closer

and closer to those of normal independent variables
as k increases; (b) to demonstrate that the distri-
bution of ry for the Pi variable is closer to the

distribution of normal independent variables than the
distributions of ry for V and Pe variables; and

(c) to demonstrate that the use of N instead of N-k

in formulas for the expected value of r, and ofvar r,

introduces a departure in slope between the distribu-
tions of ry for V, Pe , and Pi , and those of nor-

mal independent variables, and that this departure
increases with an increase of k . These objectives
will be pursued further in the discussion of the change
in the statistical parameters of the rk-distributions
as k increases,

The general conclusions from Figs. 13 and 14
are:

(1) Average values of r, for V, Pe , and
Pi-series are closer to the average values ry of nor-

mal independent variables for large k-values
(k=7, 8, 9, 10, 11) than for small k-values (k = 2,
3, 4, 5, 6),

(2) Straight line fits to the distributions of
T for V-, Pe-, and Pi—variables parallel better the

straight line distributions for r of the corresponding

N =30 years
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Fig. 12 Cumulative distributions of the first serial correlation coefficient for the series of the second large
sample of river gaging stations (n = 446) and for the series of the large sample of precipitation
stations (n = 1141), both in Western North America, for the simultaneous period of observation 1931~
1960, with N = 30, on cartesian-probability scales: (1) V-series (annual flow); (2) Pe-series (annual

effective precipitation); (3) Pi-series (annual precipitation at the ground); (4) normal independent

variables, with the mean El estimated by eq. 2.3 and 2. 23, and the variance estimated by eq. 2._ 273

and (5) normal independent variables, withthe mean El estimated by eq. 2.2, and the variance

estimated by eq. 2. 27.
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Fig. 13 Cumulative distributions of serial correlation coefficients r, through r,, for the series of the second

large sample of river gaging stations (n = 446) and the large sample of precipitation gaging stations
(n = 1141) from Western North America on cartesian- probability scales: (1) V-series Nm = 37);

(2) Pe-senes (Nm_= 37); (3) Pi-senes (Nm = 54); (4) normal independent variables, with the mean
El estimated by egs. 2.3 and 2. 23, and the variance estimated by eq. 2. 27 with Nm = 37; and (5) nor-
mal independent variables, the same as under (4) except that N_ = 54,
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Fig. 14 Cumulative distributions of serial correlation coefficients r, through T for the series of thesecond

large sample of river gaging stations (n = 446) and the large sample of precipitation gaging stations
(n = 1141) from Western North America for the simultaneous period of observation 1931-1960, with
N = 30, on cartesian-probability scales: (1) V-series; (2) Pe-series; (3) Pi-series; and (4) normal

independent variables, with the mean ;1 estimated by eqs. 2.3 and 2. 23, and the variance estimated

by eq. 2.27 with N = 30,
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normal independent variables (same N) for small k
(2, 3, 4, 5, 6) than for large k (7, 8, 9, 10, 11).
Because the series are relatively short for V and
Pe (Nm = 37), the value Nm - k is changing from 35

to 26 for k changing from 2 to 11, and the use of
N, instead of Nm - k in computing r . and var ry

may be the explanation for this conclusion. For Pi
with L 54, the effect of k is smaller for this
variable than for V and Pe because Nm-k is much
larger for Pi-series than for V- and Pe-series for
the same k .,

(3) A replacement of N by N-k in the
expressions for the mean and variance of r, may
better fit the distributions of Ty of V, Pe , and Pi

for large values of k, than if N were used for all
rk-values. This conclusion may be partly the conse-

quence of using eq. 1.10 in the computation of T in-
stead of using eq. 1.5,
4, Average values of the serial correlation

coefficients. Figure 15 is based upon computations
from the longest available records of V-, Pe’ , and

Pi‘series. It gives the following statistics of Ty
distributions as they change with the lag k: mean s
standard deviation s, skewness coefficient Csr )
and kurtosis kr . The mean and other statistics are

computed by using the average length of the time

series in the sample, The expected mean ry and the
standard deviation s,. of normal independent vari-

ables are given for the corresponding average length
of time series (with Nm = 37, which corresponds to

V- and Pe-series, and with N, = 54 which corres-
ponds to Pi-series). In this case Fk for normal in-

dependent variables is estimated by eq. 2.7 for all
k wvalues by B ® -HNm as well as by the equation

.
E'pk-Nm‘k i 4,1

Similarly, the standard deviation of r, of normal
independent variables is computed by eq. 2.3 as
B T -l,lw‘/( N l] as well as by the equation

8 = —t 4.2

r N -k+2
m

Figure 16 (as in Fig, 15) gives the same statistics for
Y=, Pe- 3 Pi-series, and normal independent vari-

ables for the simultaneous 30 years of records (1931-
1960).

Both figures show clearly that the expres-
sions given by eqs. 4.1 and 4. 2 for the mean and
standard deviation of ry fit the observed values for

large k better than the values obtained by eq. 2.7 or
2,3, Therefore, eqs, 2.2, 2.3, 2.4, 2.5, 2.7, and
2,8 are good approximations only for small k or
better for ratios N/(N-k) close to unity. Note that
B computed for normal independent variables by

the use of eq. 4.2 with the appropriate series length
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approximates very well the sr‘s of V-, Pé , and
Pi-series. This is true for both cases where all
available record and the 30-year period are used. If
computed by eq. 2.3, s, of normal independent
variable is constant and departs significantly from
s, of the other variables for large k values.

The skewness coefficient csr of r) -distri-

butions fluctuates highly but , on the average, not
very far above the value Csr = 0. The kurtosis k

r
of rk-distributions fluctuates also about k = 3, or

about the value for normal distribution of Ty .

It may be concluded from the values S, s
Csr , and kr that rk-distributions may be con-
siderec.i normal with mean ry and standard devia-
tion s except near the ends of the range [+1, -1].
, and Pi-

series fluctuate about ?k-values computed by eq. 4.1,

For large k the values Fk of V-, P_-

As srfs of V-, Pe- , and Pi-series are
close to sr's of normal independent variables, the

test whether their difference is or is not significant
from zero is not carried out here. The only test
carried out here for the significance of differences
is for_rk(V} ST rk{Pe) -1 ; and rk(Pi) "Iy
with Ty the value for the corresponding normal in-

dependent variables. In this test of differences, the
confidence limits at the 95% level are used about Ty,

assuming that rk-values of normal independent vari -
ables are normally distributed about T, . The values
;k of normal independent variables are estimated by

eq. 4.1 and are given in Figs, 15 and 16, upper graph,
The simple average ry for V-, Pe- , and Pi -

series is used instead of a weighted average, with the
expectation that the large values of n (n=446 for V-
and P_-series, and n = 1141 for Pi-series) will pro-

duce approximately the same values of ;k as the

weighted means,

The effective number of stations for ;k is

ne , and it is estimated by eqs. 2.74 and 2. 73, with

T = = 2 12 -
var r, _var r-k!ne s,. fne , and the standard devia
tion of T, is s(rk) = Srl"\j n_ . The confidence
limits on a given level are, therefore

to _ ts

B = 4.3

T ® Pxt e SV

Using eq. 4.1 for the estimate of Fk , and eq. 4.2

for the estimate of o then

- -1 t
r = & T =
k Nm k W/ne(Nm k +2)

From eq. 2,74 it follows that

A [1+T (n-1) 45
n(N_~k+2) :

1]
1
"+

Tk N_ -k




0| T ? T ‘? T § T g—r ‘lo T 1-2 |—H T Q_F‘L—zg_'-_&'_'__aﬂ'_‘k

q 5r=\’#-0_131 Sr-‘v#mﬁa 9

for Nm=37 for Nep=54 " tor N=37

-Q3F
- D4~

45~
4.0-

6lé|4|IéIéI'.IKI}Il:?lih’Trﬁl’TE_JQIOIEIEIEIA.IK

Fig. 15 Average values of I-k', standard deviation 8. , skewness coefficients Csr » and kurtosis k. of
the serial correlation coefficients r, through r,cfor the secondlarge sample of river gaging stations

(n = 446) and the large sample of precipitation gaging stations (n = 1141) from Western North America:
(1) V-series (Nm = 37); (2) Pe"series (Nm = 37); (3 Pi-series {Nm = 54); (4) normal independent

variables, the mean Ek estimated by eq. 2.3 with N =37 (5) normal independent variables, the
mean Fk estimated by eq. 4.1 with Nm = 37, (6) normal independent variables, the mean Fk
estimated by eq. 4.1 with Nm = 54; (7) normal independent variables, the confidence limits at the 95

percent level for the effective number of stations n, = 6. 30, instead of the actual number n = 446;

(8) normal indep endent variables, the confidence limits at the 95 percent level with the effective num-
ber of stations .= 9. 65 instead of the actual number n = 1141; (9) normal independent variables, the

standard deviation estimated by the second moment from eq. 2.3 with Nm = 37; (10) normal inde-
pendent variables, the standard deviation estimated by eq. 4.2 with Nm = 54; (11) normal indepen-
dent variables, the same as under (9) but with N =54 (12) normal independent variables, the same
as under (10) but with Nm =54, Curves 1, 2, and 3 on all plots refer to V-, Pe- and Pi-series
respectively.
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Fig. 16 Average value of Fk , standard deviation S, skewness coefficient C_ , and kurtosis k. of

the serial correlation coefficients ry through r'ig for the secondlarge sample of river gaging stations

(n = 446) and the large sample of precipitation gaging stations (n = 1141) from Western North America
for the simultaneous period of observation 1931-1961, with N = 30: (1) V-series; (2) Pe-series;
(3) Pi-series; (4) normal independent variables with the mean ;k estimated by eq. 2.3 with N = 30;
(5) normal independent variables with the mean Fk estimated by eq. 4.1 with N = 30; (6) normal

independent variables, the confidence limits at the 95 percent level for the effective number of stations
0 6. 30 instead of the actual number n = 446; (7) normal independent variables, the confidence

limits at the 95 percent level for the effective number of stations n, = 9. 65 instead of actual number

n = 1141; (8) normal independent variables, the standard deviation estimated by the second moment
from eq. 2.3 with N = 30; (9) normal independent variables, the standard deviation estimated by
eq. 4.2 with N = 30. Curves 1, 2, and 3 on all plots refer to V-, Pe- , and Pi-series respectively.
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with r given by eq. 2.72, In section B, equations
2,69 through 2,74 were developed to compute the
average interstation correlation coefficient of the

first serial correlation coefficients among the station
series. The matrix of the simple interstation correla-
tions between station series and eq. 2.73 are used for
the digital computation of the pairwise estimates of the
interstation correlation coefficient of their first serial
correlation coefficients. The average interstation
correlation coefficient of f, s, c.¢. is then computed by
eq. 2,72, The average interstation correlation co-
efficient, r, is 0.157 for V-series and 0. 159 for
Pe-series. Equation 2, 74 gives the effective number

of stations, n, = 6.26 and n, =6.29 for V- and Pe-

respectively, Even though the interstation correlation
of the £, s. c. c. is relatively small, the original sample
size of 446 is reduced to an effective random sample
size of approximately 6, 30 for both series.

Equation 4. 4 gives the confidence limits at
the 95% level (t = 1. 96) for the mean of first serial
correlation coefficient, with k = 1, ng = 6.30, and

N _ =37, as ;1 = 40,099 and Fi = -0, 155, Assum-
ing that the effective sample size n, for any r, is
the same as for ry ,orn = 6. 30, then for V- and
Pe-series

= 1 + 1, 96 4.6

r_- - -
ko 3T-k ° 3500w

The confidence limits computed by eq. 4.6 are
plotted inFig, 15,

Though n, for V- and Pe-series has been

computed for the longest records of each station, the
same value n, = 6.30 is also used for the V- and Pe-

series of the 30-year period of record (1931-1960),
Using eq. 4.4 and N=30, the values of the confidence

limits of r. at the 95% level are computed and plotted
in Fig. 16, upper graph,

Figures 15 and 16 show that only two average
values of T, namely ry and rg for both V- and
Pe-series are outside confidence limits, It is con-
cluded here that FI(V) and Fi(Pe) are significantly
different from the expected value of Py of normal in-

dependent variables at the 95% level. However, the
fact that 1”5(V) and rﬁ(Pe) are greater than the posi-

tive confidence limit at the 95% level may be explained
by sampling fluctuations. There are 25 values of Ty

for each of the two series and 5% of them or about 1. 25
should be outside the confidence limits on the average.

The P, -series (n = 1141) has the average

interstation correlation coefficient between the first
serial correlation coefficients of T = 0.095. The
effective number of stations, n, . equals 9.65. Eq.

4.4 gives the confidence limits at the 95% level
(t = 1, 96) for the mean of the f. s.c.c. with k= 1.
n, = 9.65, and N =54, as

Fl = 40,066 and r, = -0.103 .

1
Assuming the effective sample size n, for

any r. is the same as for Ty, or n, = 9,65, then
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for the Pi-series

= ! 188

A L —
k= Bk /9. 65 (56-K)

The confidence limits computed by eq. 4.7 are plotted
inFig. 15, Using the same effective number of sta-
tions ng = 8. 65 for the P;-series with N=30 (period

1931-1960) and eq. 4.4, the confidence limits are
plotted in Fig. 16 similarly as in Fig, 15.

4.7

Figure 15 shows that the only value of T
for the P;-series which is outside of confidence
limits at the 95% levelis T, . Although r, isin-
side the confidence limits, Fig. 15 shows that F‘
through re of P;-, V-, and P_- series are all
positive. Also, the negative values r, through T,
of V-and P % -series are parallelled by negative
values of Pi-series. This indicates that Pi-series

has a small regression effect of moisture carryover
similar to that of Pe -series, Figure 16 shows that

all Fk values of the P;-series are inside the confi-
dence limits at the 95% level except F3 which touches
the positive limit,

It may be concluded that the annual precipi-
tation at the ground has no significant dependence in
sequence and that the series of annual precipitation
statistically cannot be distinguished in its sequential
patterns from independent variables.

5. Individual correlograms. Figures 17
and 18 give correlograms of annual flows (V-series)
and annual effective pre ipitation (Pe -series) for 40

river gaging stations and « »r.’elograms of annual pre-
cipitation at the ground (Pi-series) for 44 rainfall sta-

tions all taken from the large sample of stations
from Western North America,

The expected values of Fk for normal inde-

pendent variables are computed for an average length
N, of the time series for all 24 graphs (each contain-

ing 4-6 correlograms) for these three series, and they
are plotted in each graph as shown in Figs, 17 and 18,
Also given in Figs, 17 and 18 are the confidence limits
at the 95% level as computed by eq., 2.10. The time
series length used varies from one grouping to
another depending on the mean length of the time
series presented in that particular grouping. These
mean lengths have been rounded to the nearest multi-
ple of ten, i.e., N = 40, 50, 60, 70, or 80,

This massive presentation of correlograms
is used here intentionally to show an overall confine-
ment of correlograms of V-, Pe-, and P -series

inside the confidence limits for an averagel series
length of normal independent variables. Figures 17
and 18 show clearly that most of the correlograms are
well inside the approximate confidence limits, espe-
cially if one takes into consideration the fact that about
5% of r, -values should be on the average outside the
confidence limits for normal independent variables
plus the fact that some of the serial correlation co-
efficients (rt, r,, rz...), particularly those of

V-and P_ -series, should be significantly different
from those of normal independent variables,
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Fig. 17 Correlograms of 62 individual series in groups of 5 or 6 from V-, P_-, and Pi-series. The left column shows correlograms for the first
20 series from the V-series and the middle column shows correlograms for the first 20 series from the Pe-series, all taken from the second

large sample of river gaging stations (n = 446). The right column shows correlograms for the 22 series from the Pi-series from the large

sample of precipitation gaging stations (n = 1141).

For V-series and Pe-series the confidence limits at the 85 percent level of significance

for the normal independent variables are given as estimated by eq. 2.10 with N = 50, and for Pi-series with three values of N = 60, 70, and

80. The mean Fk as estimated by eqs. 2.3 and 2. 33 are also plotted on each graph, with Nm , the average length of series in each group.

The river gaging stations are:

(1)
(2)
(3)
(4)
(5)
(6)

(7)
(8)

(9)
(10)

Klickitat River near Glenwood, Washington, 1910-1960 (51)
Quinault River at Quinault Lake, Washington, 1912-1960 (49)
Cedar River near Landsburg, Washington, 1896-1960 (65)
Wenatchee River at Plain, Washington, 1911-1960 (50)
Thompson River at Spences Bridge, CANADA, 1917-1960 (44)
Oak Grove Fork above Power Plant Intake, Oregon,
1910-1960 (51)

Siletz River at Siletz, Oregon, 1906-1911, 1926-1960, (41)
South Fork Big Butte Creek near Butte Falls, 1918-1922,
1926-1960 (40)

Grande Ronde River at LaGrande, Oregon, 1904-1915,
1919-1960 (52)

Silvies River near Burns, Oregon, 1904-1805, 1910-1912,
1918-1960 (48)

The precipitation gaging stations are:

(1)
(2)

(3)
(4)

(5)
(6)
(7)
(8)

(9)
(10)

Anacortes, Washington, 1893-1960 (68)

Walla Walla WB City, Washington, 1857-1859, 1860-1861,
1864, 1874-1960 (93)

Chelan, Washington, 1892-1960 (69)

Centralia, Washington, 1892, 1894, 1896-1897, 1902-1922,
1925-1960 (61)

Seattle WB AP, Washington, 1892-1860, (69)

Kelowna, British Columbia, CANADA, 1900, 1903-1960 (59)

Rosenburg, WB AP, Oregon, 1878-1960 (83)
LaGrande, Oregon, 1887, 1890-1891, 1893-1895,
1898-1960 (69)

Albany, Oregon, 1879-1960 (82)

Prineville 4NW, Oregon, 1897-1902, 1904-1909, 1911,
1914-1919, 1922-1926, 1928-1960 (57)

(11)
(12)
(13)
(14)
(15)

(16)
(17)
(18)
(19)

(20)

(11)

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

Kaweah River near Three Rivers, California, 1911-1960 (50)
Cherry Creek near Hetch Hetchy, California, 1911-1960 (50)
Arroyo Seco near Soledad, California, 1902-1960 (59)

Trinity River at Lewiston, California, 1912-1960 (49)

West Fork Mohave River near Hesperia, California, 1805-1822,
1930-1960 (49)

Snake River at Moran, Wyoming, 1904-1960 (57)

Boise River near Twin Springs, Idaho, 1912-1960 (49)

St. Joe River at Calder, Idaho, 1912, 1921-1960 (41)

Milk River at Milk River, Alberta, CANADA,

1912-1960 (49|
Kootenay River at Wardner, CANADA, 1928-1960 (33)

Lakeview, Oregon, 1885-1887, 1891-1892, 1895-1898, 1901-
1907, 1913-1960 (64)

Chico Experiment Station, California, 1871-1860 (90)
Eureca WB City, California 1887-1960 (74)

Fort Ross, California, 1875-1960 (86)

San Jacinto, California, 1887, 1893-1960 (69)
Visalia, California, 1878-1885, 1888-1960 (81)
Caldwell, Idaho, 1905-1960 (56)

Qakley, Idaho, 1894-1960 (67)

Grace, Idaho, 1907-1960 (54)

A'shton IS, Idaho, 1899, 1902-1913, 1915-1960 (59)
Helena WB AP, Montana, 1881-1882, 1884-1960 (79)
Lyndon, Alberta, CANADA, 1911-1960 (50)
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Fi'g. 18 Correlograms of 62 individual series in groups of 5 or 6 from V-, P, -, and Pi-se ries is a continuation of Fig, 17. The left column shows

correlograms for 20 additional series from the V-series, numbers 21-40 and the middle column shows correlograms for 20 additional ser-
ies from the Pe-series, numbers 21-40, taken from the second large sample of river gaging stations (n = 446). The right column shows

correlograms for 22 additional series from the Pi-serit‘-_‘s, numbers 23-44, from the large sample of precipitation gaging stations (n, 1141),
For V-series and Pe‘series the confidence limits at the 95 percent level of significance for the normal independent variables are given as
estimated by eq. 2.10 from two values N = 50 and N = 40 and for the Pi*series for the N = 70 and N = 60, The mean Py as estimated
by eqs. 2.3 and 2. 23 are also plotted on each graph with N_ . the average length of series in each group.

The river gaging stations are: (31) Middle Fork Forked Deer River near Almo, Tennessee,
. 1930-1960 (31)
(21) Weber River near Oakley, Utah, 1905-1960 (586) (32) Eleven Point River near Ravenden Springs, Missouri,
(22) White River near Meeker, Colorado, 1902-19086, 1922-1960 (39)
1910-1960 (56) (33) Tarkio River near Fairfax, Missouri, 1923-1960 (38)
(23) Lion Creek near Halfway, Colorado, 1909-1960 (52) (34 Marias Des Cygnes River near Ottawa, Kansas, 1903-1905,
(24) Bull Lake Creek near Leonore, Wyoming, 1919-1960 (42) 1920-1960 (44)
(25) Little Missouri River near Alzada, Montana, 1913, 1916- (35) Petit Jean Creek at Danville, Arkansas, 1917-1960 (44)
1925, 1929-1960 (43) (36) Yegua Creek near Somerville, Texas, 1925-1960 (36)
(26) Dolores River at Dolores, Colorado, 1896-1903, 1911-1912, (37) Colorado River at Ballinger, Rexas, 1808-1960 (53)
1922-1960 (49) (38) Llano River near Junction, Texas, 1916-1960 (45)
(27) San Pedro River at Charleston, Arizona, 1905, 1913- (39) Leon River near,Belton, Texas, 1924-1960 (37)
1960 (49) (40) Neches River at Evadale, Texas, 1923-1960 (38)

(28) Verde River below Bartlett Dam, Arizona, 1889-1960 (30)

(29) Red River near Questa, New Mexico, 1913-1960 (47)

(30) Bluewater Creek near Bluewater, New Mexico, 1913-1915,
1917-1918, 1928-1960 (38)

The precipitation gaging stations are: (31) Tuscon, Uof A, Arizona, 1876-1960 (85)
- (32) Wolf Canyon, New Mexico, 1912-1960 (49
(23) Fillmore, Utah, 1892-1960 (69) (33) Ione, New Mexico, 1916-1960 (45)
(24) Moab, Utah, 1890-1960 (71) (34) Ashland DDC8, Kansas, 1889-1960 (72)
(25) Salt Lake City WB AP, Utah, 1875-1960 (86) (35) Manhattan No. 2, Kansas, 1858-1960 (103)
(26) Lusk, Wyoming, 1890-1892, 1896-1899, 1902-1909, (36) New Madrid, Missouri, 1894-1960 (67)
1912-1918, 1921-1960 (62) (37) Stephenville, IE, Missouri, 1893-1960 (68)
(27) Fort Collins, Colorado, 1873-1874, 1880, 1882-1884, (38) Marlow 1 WSW, Oklahoma, 1901-1960 (60)
1887-1960 (80) (39  Mena, Arkansas, 1888-1889, 1891-1909, 1911-1960 (71)
(28) Leadville, Colorado, 1889-1890, 1896-1904, 1908-1960 (40) Coleman, Texas, 1878-1880, 1882, 1895-1960 (70)
(64) (41) Galveston WB City, Texas, 1871-1960 (90)
(29) Durango, Colorado, 1889, 1895-1960 (67) (42) Greenville 25W, Texas, 1900-1960 (61)
(30) Jerome, Arizona, 1898-1889, 1901-1915, 1917, (43) New Braunfels, Texas, 1889-1906, 1908-1960 (71)

1919-1960 (60) (44) Raymondville, Texas, 1911-1960 (50)
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Fig. 19 Regional distribution of the first serial correlatio

n coefficient for the largé sample of precipitation gaging stations (n = 1141} from Wes+tern
North America. The small circles are locations

of precipitation gaging stations. Isolines of equal values of ri(f. S.c.c.) are drawn shaowing

no systematic patterns in the areal distribution of positive or negative values, especially of the extreme values.




Correlograms of the series of annual river
flow, annual effective precipitation, and annual pre-
cipitation in North Western America, according td the
above analysis, do not point to any patterns in sequence
of cyclical character or to a significant trend. The
fact that several correlograms start with high average
values of r, through ry and then decrease slowly

for a greater lag k, only points to the fact that some
moving average scheme may be present. These
schemes are likely to be only the product of water
carryover in river basins from year to year and its
outflow in subsequent years either through surface
and ground water flow or through evaporation and
evapotranspiration into the atmosphere.

6. Effect of length of time series. As has
been shown above, the dependence increases with an
increase of the time series length, This conclusion
should be accepted very cautiously, because the
comparison of a 30-year period (1931-1960) with a
longer average length (37 and 54 years, respectively
for V- and Pi-series} may be misleading. By pure

chance or sampling fluctuations, the period of 30
years may show either a greater or a smaller time
dependence than a somewhat longer average length
which includes this period of 30 years.

It is likely that a longer average period than
30 years will have a larger amount of nonhomogeneity
in the data (a larger quasi-stationarity), so that this
factor may produce a somewhat greater dependence
in longer series than in shorter series,

7. Regional distribution of first serial
correlation coefficient. Figure 19 shows the iso-
lines of the first serial correlation coefficients of
annual precipitation. A total of 1141 precipitation
stations have been used with 1141 values of ry

The small circles represent the positions of these
stations.

The isolines of ry

values of ry (0.3 to 0.4) as well as of low values ry

(-0.2 to -0.3). There is no systematic pattern in the

areal distribution of r Islands of high and low

values cover equally very humid regions as well as
very arid regions.

show islands of high

[t is quite unlikely that the patterns in areal

distribution of r, as shown inFig. 19 would repeat

themselves in a future sample which would be inde-
pendent of this sample used for Fig. 19, Therefore,
the main hypothesis is advanced here that the regional
distribution of r, as shown in Fig. 19 is mostly the

result of sampling fluctuations. In other words, by
an increase of the period of observation those islands
of high and low values will decrease in ab solute values
of ry and converge to the expected mean, which is

somewhere around zero. It is logical to expect that

a prevalence of more positive values than negative
values is partly produced by some small effect of non-
homogeneity in data (quasi-stationarity). The other
factor for this prevalence of positive values may be
the carryover of moisture from year to year and its
impact on the evaporation of precipitation between the
cloud base and the ground [See PartI, 1, p. 15-17].

8. The case of the Missouri River.
The sampling fluctuation of the first s.c.c. is
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discussed here with the Missouri River as an example.
Figure 20 shows the Missouri River Basin with its
main tributaries and main storage reservoirs as
developed by 1963. Figure 21 shows the fluctuation of
wet and dry years in millions of acre feet for the
Missouri River gaging station near Sioux City, Iowa,
for the calendar years of the period 1898-1962. The
characteristics of this station are given in Part I [1,
Appendix 1, pages 28 and 29, and Appendix 2, page 36]
for the water years of the period 1897-1955, The
period after 1955 of this study in Part I has been ex-
cluded because of the large impact of storage reser-
voirs upon the fluctuation of wet and dry years. The
river basin at this station covers 314, 000 square
miles. The first serial correlation coefficient for
annual flow at this station is ry = 0.590 and for
annual effective precipitation it is r =0, 532[1,
Appendix 1, page 29].

The upstream station of the Missouri River
at Fort Benton, with an area of 24, 000 square miles,
shows similar patterns in sequence as measured by
rl{f. s. c.c.) as the downstream station near Sioux

City. For the 65-year period of observation (1890-
1955) at Fort Benton the first serial correlation co-

efficient of annual flows is r, = 0. 593 and of annual

effective precipitation it is ryE 0.582 [ 1, Appendix

1, pages 28 and 29]). Therefore, the main stream of
the Missouri River has annual flows which are highly

correlated with ry = 0.60 approximately. However,

the Mississippi River below the confluence of the
Mississippi River at St. Louis shows a smaller first
serial correlation for both annual flow and annual
effective precipitation, They are 0. 294 and 0. 302,
respectively or ry = 0. 30 approximately. This

means that the Missouri River Basin has a particular-
ly high value of r, in comparison to the Mississippi

after their confluence.

The main question that arises is whether the
high correlation is a permanent pattern for the
Missouri River or whether it is mostly a product of
sampling fluctuations of wet and dry years. In the
case the sampling fluctuation predominates the popu-
lation series of annual flow is supposed to be highly
correlated. In this case most of the high positive
correlation comes from the sampling fluctuation of
ry about a much lower population value of Py - It

can be concluded on the other side that a part of the
positive serial correlation (as measured by rl) of the

Missouri River is produced by water carryover from
year to year which is released to the atmosphere in
subsequent years by evaporation and evapotranspira-
tion. In support of this conclusion is the fact that
there is a significant difference between the first
serial correlation coefficient of annual precipitation
in the Missouri River Basin as shown by isolines

of ry in Fig, 19 and the first correlation coefficient

of annual flow as given above for the two gaging sta-
tions. It can be assumed also that a part of the high
positive first serial correlation coefficient in annual
flows was produced in the historical data by nonhomo-
geneity and/or inconsistency in the data. The period
1890-1960 in the Missouri River Basin was one of a
constant increase in population and water depletion by
man-made structures and other measures. There
must be a small trend in average annual flow (a de-
crease) which may account for an increase in ry

(f.s.c.c.).
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Fig. 20 The Missouri River Basin with main tributaries and main storage reservoirs as developed by 1963,
The three main river gaging stations used are: Fort Benton and Sioux City on the Missouri River and
St. Louis on the Mississippi River.
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Fig. 21 Time series of the annual flow of the Missouri River near Sioux City, Iowa, for calendar years
1898-1962, The main pseudo-cyclicity is emphasized for the period 1925-1962 by a dashed heavy line,
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Figure 21 shows a particular cluster of wet
and dry years from 1929 to 1962, On the average
there was a dry period in the thirties, a wet period in
the forties and early fifties, and a dry period again in
the late fifties and early sixties. This type of cyclic
movement in the last 30 years is not evident systemat-
ically throughout the United States, or even in the
Middle West or West, It is particularly marked,
however, in the Missouri River Basin and some sur-
rounding areas [1, Appendix 1, pages 28 and 29].
This particular movement or cluster of wet and dry
years is mostly responsible for a large first serial
correlation coefficient in the annual flow of the
Missouri River.

A hypothesis advanced here is that the par-
ticular cluster and the resulting positive serial cor-
relation of wet and dry ycars along the Missouri
River is largely a product of sampling fluctuation,
but the other factors also affect this positive correla-
tion. The high first scrial correlation coefficient is
assumed herc to be produced by these factors: (1)
sampling cluster of wet and dry years in a pseudo-
cyclicity for the last 30 - 35 years; (2) water carry-
over in the river basin from year to year which is
released to the atmosphere by evaporation in subse-
quent years (difference between ry for V- and Pe-

series is small, so that the carryover from year to
year which is released through river flow in subse-
quent years is small); and (3) nonhomogeneity in data,
which is a consequence of the constant flow depletion.
The hypothesis of sampling fluctuation as the dominant
factor is worthwhile for further investigation because
of its implication to design criteria and to the opera-
tion of large storage reservoirs in the Missouri River
Basin for overyear flow regulations,

A question arises as to the probability that
the next period of 30 - 35 ycars will have a similar
sequence of wet and dry years as the past period of
30 - 35 years. The next question is are there any
particular physical causal factors which would pro-

duce the pseudo-cyclicity of the type shown in Fig,
21 in the Missouri River Basin which do not act in
other regions of the United States or elsewhere. The
comparison of the period 1898-1928 with the period of

1929-1962 for the Missouri River near Sioux City as
shown in Fig. 21 (it should be noted that Fig. 21
gives annual flows for calendar years while Part I,
Appendix 2, page 36 gives the annual flows for water
years) points out that the probability of a repetition
of the cluster of wet and dry years of the period
1828-1962 is at least smaller than 50 percent. Any
comparison with other regions in the United States -
will decrease this probability. The study of the
atmospheric processes which lead to precipitation
and create evaporation does not support any assump-
tion that there may be some particular factors which
are proper only for the Missouri River Basin and
which favor or even consistently produce the above
described patterns in the sequence of wet and dry
years of the period 1929-1962.

A systematic study of clusters of wet and
dry years in the Missouri River Basin is worthwhile.
This may lead to a separation of the effects of the
three main causal factors of high values of Ty

the sampling effect, the carryover cffect,

(f.s.c.c.):
The

and the nonhomogeneity in data (depletion) effect,
practical importance of this analysis would lie in
better design and operation of large reservoir stor-
age capacities in the river basin. The cluster of
wet and dry years as experienced in the period 1929-
1962 requires special operation criteria and larger
storage capacities for a given degree of flow regula-
tion than the cluster of wet and dry years of the
period 1898-1928. If the cluster of the period 1929-
1962 has a small probability of repeating itself in the
near future, which is the hypothesis advanced here,
then the actual storage capacities are either over-
designed when bascd on that cluster or the effect and
benefit of storage ruservoirs will be greater in the
future than those evaluated or computed by using this
cluster,
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E. EFFECT OF INCONSISTENCY AND NONHOMOGENEITY OF DATA

1. Errors and nonhomogeneity. Errors
and nonhomogeneity in data have been discussed pre-
viously in Part I (1, Chapter E, pages 22-25). Ran-
dom errors and systematic errors, being defined
here as inconsistency in data, have been analyzed
briefly in Part I with the conclusion that the data of
many river gaging stations and many precipitation gag-
ing stations have a higher or lower degree of inconsis-
tency. It can be proved by statistical analysis that an
independent time series becomes dependent when the
series has been subjected to modifications by incon-
sistencies in the form of jumps or trends. The non-
homogeneity in data has already been defined as
changes in time series produced by significant acci-
dents in nature and by man-made structures and
other regulatory measures in river basins.

The study of the effects of inconsistency and
nonhomogeneity in data will be the subject of further
investigation and these results will be presented in a
special paper. A comparison of distributions of the
first serial correlation coefficient for two large
samples of series of annual precipitation (a sample
of homogeneous and a sample of nonhomogeneous
data) is given here for the simple purpose of showing
that the positive serial correlation in the series of
annual flow, annual effective precipitation and annual
precipitation is partly produced by inconsistency and/
or nonhomogeneity in data.

2. Comparison of homogeneous or consis-
tent data with samples of nonhomogeneous or incon-
sistent data. Figures 22 and 23 give probability dis-
tributions of the first serial correlation coefficient
(rl} for the series of annual precipitation of the large

sample of 1141 precipitation stations with the data
considered as homogeneous and/or consistent (Pi -

-series) and of the large sample of 473 precipitation
stations with the data found or considered as nonho-
mogeneous and/or inconsistent (Pia - geries).

Figure 20 refers to the longest period of observation
available for each series of both samples of stations,
and Fig, 21 refers to the simultaneous period of
observation 1931-1960 for all series of both samples.
The distributions of the first serial correlation coef-
ficient of normal independent variables are also given
in Fig, 22 and 23 for comparative purposes. The
mean El and the variance of the T - distributions

of the normal independent variables are estimated by
moments of either eq. 2.2 or eq. 2.3

The series with nonhomogeneous and/or in-
consistent data are those which were found as such
either by a consistency or a homogeneity test by the
river flow forecasting service of the U.S. Weather
Bureau or by the author because of a substantial
change in the station position (horizontal or vertical
change of gage position during the observation period.
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I'ne average values Fl for homogeneous

(and/or consistent) and nonhomogeneous (and/or in-
consistent) data of series 30 years long are 0. 028
and 0. 053, respectively. The average Fl for ho-

mogeneous (and/or consistent) and nonhomogeneous
(and/or inconsistent) data of series of maximum
available length of observation are 0. 055 and 0. 071,
respectively. The r - distribution of the P ? -
1
-series is above the r
-series in both figures. These distributions are also
above the Y- distribution of the normal independent

- distribution of the Pi1 -

variables for the lengths of series which correspond
to Pli - and Pzi - series, respectively. The aver-

( Pl.) and T, (P?) as well as the
I 1 i
(Pli) and {Pzi} show that the

age values T"l

distributions of r) r
nonhomogeneity and /or inconsistency in data is not a
negligible factor in producing the dependence in the
time series of annual precipitation. Nonhomogeneity
and inconsistency are very often present in annual
values of river flow and derived effective precipitation
as shown to exist in the data of annual precipitation.

Although there may be a disagreement about
the classification of precipitation data into homo-
geneous or consistent and nonhomogeneous or incon-
sistent samples, the large number of stations in the
two classes (P% - and Pi - series) tends to mini-

mize error due to this cause and to validate the con-
clusion that nonhomogeneity and inconsistency in
data increase, on the average, the dependence in
time series.

The conclusion derived from these two
samples of annual precipitation about an increase of
dependence in time series by an increase of nonhomo-
geneity may be supported by theoretical analysis.
Whenever a trend of a jump or the combination of the
two is introduced by any process into an independent
time series, the average result is that the series be-
comes dependent in sequence. The reservation here
is made by stating that this occurs on the average.
Sampling in time from a population of independent
time series produces series withsmall dependence
(in the range of sampling fluctuation). It may happen
that the process of introducing the nonhomogeneity or
inconsistency into data of a series in the form of
jumps or trends or both may increase or decrease
this sampling dependence. However, for many
series subjected to this analysis the average result
will be that their dependence will increase.

3. Hypothesis of quasi-stationarity. The
previous, as well as the above analysis, leads to a

hypothesis of the existence of nonhomogeneity and
inconsistency in all data of river flows and precipi-
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Fig. 22 Comparison of the distributions of the first serial correlation coefficient of homogeneous (and/or
consistent) and nonhomogeneous (and/or inconsistent) time series of annual precipitation in Western
North America: (1) distribution of r (f. s. c. c.) from the large sample of 1141 precipitation gaging

stations of the series of annual precipitation considered to be homogeneous and/or consistent (Pii =
series) with an average length of series N =54 (2) distribution of ry (f.s.c.c.) from the large
sample of 473 precipitation gaging stations of the series of annual precipitation found or considered to
be nonhomogeneous and/or inconsistent {Piz-series) with an average length of series N _ =57 years;
(3) distribution of ry (f.s.c.c.) from normal independent variables with the mean Py estimated by
eqs. 2.3 and 2. 23 and the variance estimated by eq. 2.7 with Nm = 55.5 (average of 54 and 57); and
(4) distribution of ry (f.s.c.c,) from normal independent variables with the mean p, and the
variance estimated by moments of eq, 2.2 with Nm = 55. 5.
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Fig. 23 Comparison of the distributions of the first serial correlation coefficient of homogeneous and/or
consistent and nonhomogeneous and/or inconsistent time series of annual precipitation in Western
North America for the simultaneous period 1931-1960 with N = 30: (1) distribution of r (f.s.c.c.)

from the large sample of 1141 precipitation gaging stations of the series of annual precipitation con-
sidered to be homogeneous and/or consistent (Pi1 -series); (2) distribution of ry (f.s.c.c,) from
the large sample of 473 precipitation gaging stations of the series of annual precipitation found or
considered to be nonhomogeneous and/or inconsistent (Pf*series); (3) distribution of By (f.s.c.c.)
from normal independent variables with the mean El estimated by egs. 2.3 and 2, 23 and the

variance estimated by eq. 2.7 with N = 30; and (4) distribution of r, (f.s.c.c.) from normal inde-

1
pendent variables with the mean 51 and the variance estimated by moments of eq. 2.2 with N = 30,
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tation. With a degree of nonhomogeneity and in-
consistency which varies greatly from series to
series and from variable to variable (flow, effec-
tive precipitation, precipitation at the ground, eva-
poration, change in water carryover, etc.), even
the detection and removal of jumps or trends by
appropriate corrections will still leave nonhomo-
geneity and inconsistency in the data, but to a
small degree. This small degree of nonhomogeneity
and inconsistency in data which is unremovable in
the practical sense, is defined here as the quasi-
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stationarity of the data. The impact of quasi-
stationarity on the dependence of time series may
be small, even sometimes undetectable by current
statistical techniques or tests, but it is always
present.

This hypothesis of quasi-stationarity in
hydrologic data warrants a systematic investigation,
both by theoretical and by practical analysis and
tests.




F. EFFECTS OF CLIMATIC CONDITIONS ON SERIAL CORRELATION

1. Climatic conditions. Climatic conditions
are understood here as being measured by the water
yield either from the atmosphere to the ground as the
average annual precipitation in inches or as the speci-
fic water yield of river basins at the stream flow
gaging stations expressed as the average flow rate in
cubic feet per second per square mile. The effect
of climatic conditions on serial correlation may be
studied either by regions or through a relationship
between the serial correlation coefficients and the
measures of water yield. The regional distribution
of the first serial correlation coefficient for time
series of annual precipitation is shown in Fig, 19,
The relationship of the first serial correlatjion co-
efficient of the various series (V-, P,- P;"-, and

Piz-series) to the water yield is analyzed here. The

total range of variation of the average annual precipi-
tation is divided into three groups: small, medium,
and large. For each group the distribution of ry

(f.s.c.c.) is given, and the three r, ~distributions

are compared. Similarly, the average specific water
yield of the river basins is used to divide the time
series of annual river flow into three groups: small,
medium and large average specific yield. For each
group the distribution of ry (f.s.c.c.) is also

given, and the three rl-distributions are compared,
2, Comparison of distributions of first

serial coefficient for various groups of water yield,
Figure 24 gives r, -distributions for V-series {annual

flow) of the second large sample of river gaging sta-
tions (n = 446) in Western North America for the
three different ranges of the specific water yield in
cfs/sq. mi. of river basin area and for the maximum
length of observation of each series with the average
length N =37: (1) q=1.4-10.6; (2) q=0.5-1.4;
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Fig. 24 Distributions of the first serial correlation
coefficient for V-series (annual flow) of the
second large sample of river gaging stations
(n = 446) in Western North America on car-
tesian-probability scales with Nrn = 37 for

the three ranges of specific water yield: (1)
q=1.4-10,6 cfs/sq. mi.; (2) q = 0,5-1.4
cfs/sq. mi.; and (3) q = 0.0-0.5 cfs/sq. mi.
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and (3) g = 0.0-0.5 cfs/sq. mi. Figure 25 gives the
same T, -distributions but for the simultaneous period

of observation 1931-1960 with N = 30.

Figures 26 and 27 represent the same Ty

distributions and ranges of specific water yields as
the corresponding Figs. 24 and 25 exceFt that Figs.
26 and 27 refer to Pe-series (annual effective pre-

cipitation) of the second large sample of river gaging
stations (n = 446) in Western North America.

Figures 28 and 29 represent the same r, -

distributions as the corresponding Figs, 24 and 25
except that Figs, 28 and 29 refer to the

Pil—series (annual precipitation of homogeneous and/

or consistent data) of the first large sample of pre-
cipitation gaging stations (n = 1141) in Western North
America for three ranges of average annual precipi-
tation: (1) P = 27-180; (2) P = 16,.5-27; and (3)

P =0.0-16.5 inches. Figure 28 refers to all avail-
able observations with N_ = 54 while Fig. 29 refers

to the simultaneous observation 1931-1960 with N=30,

Figures 30 and 31 represent the same r, -

distributions corresponding to Figs, 28 and 29
except that Figs. 30 and 31 refer to P,"-series

(annual precipitation with nonhomogeneous and/or
inconsistent data) of the second large sample of
precipitation gaging stations (n = 473) in Western
North America for the ranges of average annual pre-
cipitation:(1) P = 32.5-130; (2) P = 17.0-32, 5; and
(3) P=0,0-17. 0 inches. Figure 30 refers to all
available observations with N_ = 57 while Fig. 31

refers to the simultaneous observation 1931-1960
with N = 30.
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Fig. 25 Distributions of the first serial correlation

coefficient for V-series (annual flow) of the
second large sample of river gaging stations
(n = 446) in Western North America on car-
tesian-probability scales for the simultaneous
observations of 1931-1960 with N = 30 for

the three ranges of specific water yield:

(1) g=1,4-10.4 cfs/sq. mi.; (2) g=0.5-1.4
cfs/sq. mi.; and (3) q = 0.0-0.5 cfs/sq. mi.
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Fig. 26 Distributions of the first serial correlation
coefficient for Pe -series (annual effective

precipitation) of the second large sample of
river gaging stations (n = 446) in Western
North America on cartesian-probability
scales with N, = 37 for the three ranges

of specifid water yield; (1) q = 1.4-10.4

cfs/sq. mi.; (2) q=0.5-1.4 cfs/sq. mi.;
and (3) g = 0.0-0.5 cfs/sq. mi.

08 N=30

00T 07 G513 ETi6 a9 Es 7080 S0 95 9599 585 Gaos

Fig. 28 Distributions of the first serial correlation
coefficient for Pi1 -series (annual precipi-

tation with homogeneous and/or consistent
data) of the first large sample of precipita-
tion gaging stations (n = 1141) in Western
North America from all available data with
Nm = 54 on cartesian-probability scales for

the three ranges of average annual precipiti-
tation: (1) P = 27-180 inches; (2) P =16,5-27
inches; and (3) P = 0,0-16, 5 inches.
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Fig. 27 Distributions of the first serial correlation

coefficient for Pe-series (annual effective

precipitation) of the second large sample of
river gaging stations (n = 446) in Western
North America on cartesian-probability
scales for the simultaneous observations of
1931-1960 with N = 30 for the three ranges
of water yield: (1) q = 1.4-10.4 cfs/sq. mi,

(2) q =0.5-1.4 cfs/sq. mi.; and
(3) q=0.0-0.5 cfs/sqg. mi.
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Fig. 29 Distributions of the first serial correlation

coefficient for Pil -series (annual precipita-

tion with homogeneous and/or consistent

data) of the first large sample of precipitation
gaging stations (n = 1141) in Western North
America for the simultaneous observations

of 1931-1860 with N = 30 on cartesian-
probability scales for the three ranges of
average annual precipitation: (1) P = 27-180
inches; (2) P = 16.5-27 inches; and (3)

P = 0.0-16. 5 inches.



Fig. 30 Distributions of the first serial correlation

N, =57

coefficient for Piz-series (annual precipita-

tion with nonhomogeneous and/or inconsistent
data) of the second large sample of precipita-
tion gaging stations (n = 473) in Western North
America from all available data with Nm=5?

on cartesian-probability scales for the three
ranges of average annual precipitation:

(1) P = 32,5-130 inches; (2) P = 17.0-32.5
inches; and (3) P = 0.0-17. 0 inches.

TABLE 4
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Fig. 31 Distributions of the first serial correlation

coefficient for Piz-series (annual precipita-

tion with nonhomogeneous and/or inconsistent
data) of the second large sample of precipita-
tion stations (n = 473) in Western North
America from the simultaneous observations
of 1931-1960 with N = 30 on cartesian-
probability scales for the three ranges of
average annual precipitation: (1) P = 32.5 -
130 inches; (2) P = 17,0-32.5 inches;

(3) P=0.0-17, 0 inches.

Statistical parameters or rl-distributions of V-, Pe-, Pil -, and Piz-series, for three ranges of specific

water yield or average annual precipitation for each series, and for longest or simultaneous period of ob-
servation, as given in Figs. 24 through 31,

Number Average Range Number of [ Average | Standard Skewness| Kurtosis
of size of q in efs/sq.mi, | stations = deviation | Coefficient "
Series| Stations Series or P in inches per range 1 s(r'lj Cqor r
1.4 - 10.6 146 0,217 0,198 0.134 3.4
37 0.5 - 1.4 155 0. 165 0, 154 0.691 4.4
00 = 0u5 145 0,172 0. 168 1,000 4.2
L 18 1.4 - 10.6 146 0.178 | 0.218 0.178 3.8
30 Rab=- 4.4 155 0.123 0. 166 0.963 5.5
(1931-1960) 0.0 - 0.5 145 0. 165 0. 168 0.699 4.0
1.4 - 10.6 146 0.193 0. 202 0. 353 3.4
37 Oooim daod 155 0. 160 0. 156 0,826 4.9
P 446 0.0- 0.5 145 0.187 0,189 0,457 2.9
1.4 - 10.6 146 0,185 0,206 0. 225 3.0
30 0.5- 1.4 155 0,114 0.162 1. 019 4, 9
(1931-1960)] 0.0 - 0.5 145 0,163 0, 193 0,508 3.2
27.0 -180.0 380 0,070 0.136 0,243 2.8
54 16.5 - 27,0 381 0,050 0,140 0. 225 3.0
0.0 - 16.5 380 0.047 0.147 0.136 3.2
F; T 27.0 -180.0 380 0.043 | 0.154 -0. 158 3.3
30 16.5 - 27,0 381 0,029 0,167 0,202 350
(1931-1960) 0.0 - 16.5 380 0,016 0,171 0,116 2.
32.5 -130.0 156 0.062 0,138 -0. 265 4.5
' 57 17.0 - 32.5 160 0,069 0,147 0.429 2.8
0:0 =u:l=10 157 0,064 0,154 0. 302 2.9
By e 32.5 -130.0 156 0,051 0,156 -0.426 3,7
30 17.0 - 32.5 160 0. 046 0.173 -0.017 Z:h
(1931-1960) 0,0 - 17.0 157 0,047 0,180 0, 141 2.0
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The results of a comparison of the r 1-dis~

tributions in the eight figures are summarized in
Table 4. Each range contains approximately one third
of the sample. Figures 24 through 31 show clearly
that the r, -values are greater on the average for a

greater range of either specific water yield or the
average annual precipitation. Statistical parameters
of ry -distributions of Fig. 24-31 show that for

nearly all eight figures except for Piz—series and
N, = 57) the greatest T, values are for the great-

est specific water yields (q) or the greatest aver-
age annual precipitation (P). The r, -values
decrease with a decrease of either q or P . The
average value of the first serial correlation coeffi-
cient for a sample is greater for a more humid region,
Comparisons of the average values of r y among

the high ranges of V-, Pe-, Pil
and the medium and the low ranges of the same series
show clearly that r, -values decrease from V-series

-, and Piz-series,

to P_-series, and especially from P -series to Pii-

series. The Piz-series usually has a greater r -

value for most of the ranges than the Pi1 -series.

The above conclusion may serve as an indi-
rect test of the effect of evaporation in the air onthe
dependence in the series of annual precipitation at the
ground. In PartI [1, pages 15-16] mathematical
expressions have been developed for the evaporation
of precipitation in the air beiween the cloud base and
the ground. Based on that derivation, the hypothesis
was advanced in Part I that the annual evaporation
of precipitation in the air is a physical factor which
depends on the humidity of the air, and this in turn
depends on the annual evaporation from the ground
and water surfaces in a river basin and from the
areas around it. Since the annual evaporation from
the ground is affected by water carryover from pre-
vious years, the annual evaporation of precipitation
in the air is also dependent on the carryover, but less
than either the annual evaporation from the ground or
the annual runoff from a river basin.

The direct test of the effect of evaporation of
raindrops in the air on tke dependence in series of
annual precipitation at the ground cannot be carried
out because of the lack of data on the precipitation at
the cloud base for large number of stations, However,
the above indirect test may show that there is an
effect by this evaporation in the air upon the depen-
dence in the series of annual precipitation at the
ground.

The above analysis of the first serial correla-

tion coefficient of the ranges of the specific water

48

yield and average annual precipitation is, in fact, the
analysis of the differences in r, -distributions between

humid, moderately humid, and arid regions. The
fact is that humid regions have an annual precipitation
at the ground which has a higher value of r, than arid

regions. This points out that the greater dependence
must be a result of a physical factor which has a
greater influence on the time series of precipitation
in humid regions than in arid regions. The most
attractive physical factor seems to be the evaporation
of precipitation in the air between the cloud base and
the ground. The water carryover from year to year is
usually greater in absolute value and per unit area in
humid regions than in arid regions. The impact of
evaporation from the ground upon the evaporation of
precipitation in the air should be somewhat greater in
humid regions than in arid regions because of the
water carryover from year to year. Thus the hypoth-
esis advanced in Part I may have some support from
the above analysis and discussion. However, this
hypothesis must wait for sufficient data from precipi-
tation measurements at the cloud base in order to be
proved or disproved.

Table 4 shows that the standard deviation of
r, -distributions is also the greatest for the high

range (or humid regions) of specific water yield for
V- and Pe-series. For annual precipitation or
P!
deviation are for the most arid regions. However,
the differences in standard deviations are so small
between ranges in both cases that neither explanation
nor hypothesis is advanced here about these differ-
ences.

and Piz-series the greatest values of standard

The skewness coefficient of r 1'distributions

shows a clear pattern between the ranges for V- and
Pe -series. The humid regions have the smallest CEir

values for all cases of V- and Pe-series. For annual
precipitation or Pil- and Piz-series there is no
clear pattern in Csr coefficient although one third of

them are negative and all others are relatively small
in comparison with the V- and Pe-series. Similar
conclusions may be derived for the kurtosis kr of
the r, -distributions. For V- and Pe-series the
average values of kr for 12 cases are greater than
three, while for 12 cases of Pil- and Piz-series
the average value of kr is close to three. It can be
concluded that the Ty -distributions for the three
ranges of Pii- and Piz-series are much closer to
the normal distribution than are the r 1 -distributions
for the three ranges of V- and P -series.



G. CONCLUSIONS

From the preceding analysis by serial cor-
relation of the four large samples of series of annual
river flow, annual effective precipitation, and annual
precipitation at the ground some basic conclusions
may be derived.

The water carryover from year to year, and
especially the constant change in this carryover from
year to year is the basic physical factor in time de-
pendence of the annual river flow, annual effective
precipitation and annual precipitation.

This change in carryover affects the depen-
dence in three basic ways:

(1) The part of the carryover which flows
out of river basins by surface or underground runoff
is the basic casual factor for the annual river flow
having on the average a greater time dependence than
the annual effective precipitation;

(2) The part of the carryover which goes
into the atmosphere through evaporation and evapo-
transpiration from the surface is the basic casual
factor for the annual effective precipitation having on
the average a much greater time dependence than the
annual precipitation at the ground; and

(3) The part of the carryover which goes
into the atmosphere through evaporation and evapo-
transpiration from the surface of a river basin and
adjacent basins is likely to be the basic casual factor
for the annual precipitation at the ground having on
the average a somewhat greater time dependence
than the annual precipitation at the cloud base, This
last statement should be understood to be more a
hypothesis than a final conclusion.
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Serial correlation analysis, with appropriate
statistical tests, has been used with success to
detect some patterns in the sequence of annual river
flow, annual effective precipitation and annual preci-
pitation at the ground. There is no statistical or
other evidence that any cyclic (or deterministic)
movement exists in the sequences of these variables.
There is no evidence; at least by the statistical tests
used, that the average sun-spot cycle affects signi-
ficantly the fluctuation of wet and dry years of runoff
and rainfall. The sequence of wet and dry years may
be considered as a pure stochastic process. The
most likely general stochastic mathematical model
fitting the time dependence of the above series is the
moving average scheme. Among the various mathe-
matical models for the moving average scheme the
first and the second order linear autoregressive
models, or Markov linear models, have been shown
to fit well the stochastic process of the time series
of annual flow of river basins with substantial water
carryover from year to year.

Apart from the physical factor of water carry-
over, the inconsistency and nonhomogeneity of the
data are shown to be factors which increase on the
average the time dependence. The jumps and trends
created by nonhomogeneity and/or inconsistency in
data increase the time dependence.

The serial correlation analysis further sup-
ports the conclusion made in Part I (1, page 26) that
the causal factors of time dependence for annual flow
and annual precipitation should be analyzed and
accounted for before attempts are made to search for
causal factors of this time dependence in the upper
atmosphere, in oceans, and in solar and cosmic
activities.

o
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There is no statistical evidence that cycles exist in river flow
or precipitation time series beyond the astronomic cycle of the
year. Moving average schemes in general and the first and
second order autoregressive schemes (Markov linear mathe-
matical models) in particular fit sufficiently well the patterns
in the sequence of annual river flows of river basins with large
water carryover.

There is no statistical evidence that cycles exist in river flow
or precipitation time series beyond the astronomic cycle of the
year. Moving average schemes in general and the first and
second order autoregressive schemes (Markov linear mathe-
matical models) in particular fit sufficiently well the patterns
in the sequence of anmual river flows of river basins with large
water carryover.
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or precipitation time series beyond the astronomic cycle of the
year. Moving average schemes in general and the first and
second order autoregressive schemes (Markov linear mathe-
matical models) in particular fit sufficiently well the patterns

in the sequence of annual river flows of river basins with large
water carryover.

There is no statistical evidence that cycles exist in river flow
or precipitation time series beyond the astronomic cycle of the
year., Moving average schemes in general and the first and
second order autoregressive schemes (Markov linear mathe-
matical models) in particular fit sufficiently well the patterns
in the sequence of annual river flows of river basins with large
water carryover,
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