

ECOMAP
a COMPUTER PROGRAM FOR MAPPIMG ECOLOGICAL DATA
Charles D. Bonham
Range Science Department
Science Series Ho. 9
Colorado State University NUGUST 1971

ECOMAP
A COMPUTER PROGRAM FOR
MAPPING ECOLOGICAL DATA

Charles D. Bonham
Range Science Department Colorado State University

INTRODUCTION

In ecological disciplines, the major objectives for using operations research include: evaluation, optimization, and control of manipulative processes. Ecological evaluation problems arise, for example, in the assessment of availability of vegetation resources while optimization problems arise in the development of a management plan to use the vegetative resource. Control problems arise when consideration is given to the efficient application and successful operation of a management scheme designed especially for the ecological system. Major disciplines which are applicable to the solution of these problems include: ecology, statistics, systems analysis, and operations research. Computer mapping techniques have proven useful in solving problems existing in several disciplines and can be used for ecological evaluation purposes, determination of optimization procedures, and to control management procedures in ecological systems. To date, these computer mapping techniques have not been applied extensively to the study of ecological systems.

Computer mapping refers to presenting displays of response surfaces or contouring ecological variables of interest. These procedures are analagous to drawing in elevation contour lines for topographic maps and can be used to display ecological variables by levels over a particular geographic region. Specifically, we may be interested in studying the above ground standing crop and its characteristics over a given area. The use of computer contouring techniques is one approach that is available for this purpose. This procedure is useful for obtaining samples from a region and interpolating between each of the sample points.

Contours can be made of data for the geographical region of interest. Therefore an interpolation model is needed for mapping ecological data over a geographical region of interest. That is, we are interested in the geographical distribution and relative quantity of the ecological variable with respect to an x, y coordinate system.

The state of ecological technology is such that theory is seldom sufficiently complete to describe ecological variables quantitatively. Moreover, the spatial distribution of ecological variables in the system is little understood. Furthermore, little is known about interrelationships of variables that operate within a given ecological system. Consequently, a high degree of empiricism tends to prevail in quantitative ecology and related mathematical modeling.

Regression models are often used as a practical method for expressing a multiplicity of observations in a functional form which is suitable for manipulation by computer.

The classical approach to regression analysis is demonstrated by use of a one dimensional problem in which some relation

$$
\begin{equation*}
y=f(x) \tag{1}
\end{equation*}
$$

is sought between the variable x and some response variable y dependent upon it. For example, x may be a critical variable such as precipitation, that is useful in predicting y, the yield of biomass per square kilometer. Observations are then made on a number N of (x, y) pairs and the theory of least squares is applied to obtain parameter estimates for the equation. A polynomial is the type of equation most generally used in such analyses. An example is

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots+\beta_{q} x^{q}, q \leq N \tag{2}
\end{equation*}
$$

Terms are added to the polynomial equation until a sufficiently good fit is obtained to satisfy some criterion. Ordinarily, a test based on the residual sums of squares is used to indicate that a significant amount of the y variation has been accounted for. However, two-dimensional mapping or contouring requires that the procedure use a slightly different form which includes the third variable. The generalized function is such that

$$
\begin{equation*}
z=f(x, y) \tag{3}
\end{equation*}
$$

where Z is the response variable and x and y are coordinate values for two orthogonal directions. Thus, computer mapping or contouring can be accomplished. This generalized function clearly indicates that a study could be made of a variable (Z) with respect any two orthogonal variables (x, y) which can be geographical position indicated by a pair of values. Another example is the use of a randomized block design where x is the block effect and y is the treatment effect and Z is the response variable.

Once the functional form is found which adequately expresses a relationship between the response variable, and the independent variables over a particular region of interest then the variance of that particular response variable can be derived. The generalized variance function for polynomials is expressed as:

$$
\begin{equation*}
V(Z)=\sum_{i=0}^{q} V\left(\beta_{i}\right) \quad\left(X^{i}\right)^{2} \quad, \quad q \leq N \tag{4}
\end{equation*}
$$

The variance of a function is used to study the variability of a variable with respect to another variable or set of variables.

The need to study ecological variability over a geographical region should be established so that a clear understanding of computer mapping and the scope of its application can be developed. The range of values that occurs for an ecological variable of interest may be indicated by
the solution of the variance function. Therefore, it may be of major concern to find a region, for example within a given area where the variable being studied varies the most or the least.

Phytosociological mapping could also be carried out using a functional relationship of species with respect to their geographical position. In this way ecological mapping would essentially be a reconstruction of the vegetation elements over a particular region. Phytosociological mapping via computer has not been accomplished with great success to date, but may be very useful in the near future. The use of simulation procedures would enable a study to be made of the vegetation structure over a particular region. Furthermore, computer mapping would permit an examination to be made of phytosociological relationships among species with respect to their geographical location. Additionally, these procedures would be useful for analyses of vegetation patterns over a particular region of interest.

Methods And Approach To The Problem

In order to map ecological components for a region of interest, a mathematical representation of the ecological variable must be made. However, it has already been pointed out that the mathematical aspects of ecology has not yet advanced beyond the state of empiricism. Furthermore, ecological theory is not sufficiently complete to describe the distribution of ecological components geographically. Therefore, the basic approach taken here is one in which a regression model is used.

Under the assumptions of regression analyses, the best model is the one that yields the least residual sums of squares. It should be recognized that residual sums of squares are available only at points in the X space
from which observations are made. Consequently, residual sums of squares may have little relation to the accuracy of the model at interpolation points in the X space where observations are not available. Yet, interpolation is exactly what is needed to map ecological variables over a region without extensive sampling. Commonly a mathematical model is selected and observed data are used to estimate the model parameters. The predictive model is then used to interpolate between sample points. It follows that additional data must be obtained from the interpolated region to evaluate the accuracy of the model. Thus, the regression approach can be evaluated for usefulness in mapping ecological characteristics over geographical regions of interest. In particular, if a linear model is used then statistical analysis of the data can be conducted easily.

There are non-statistical aspects of regression models which are important and have bearing on the justification for using them in computer mapping. In elementary mathematics, the domain and the range of a function is defined by ordered pairs of numbers. That is

$$
\begin{aligned}
& D=\left(x_{1}, x_{2} \ldots, x_{n}\right) \\
& R=\left(y_{1}, y_{2} \ldots, y_{n}\right)
\end{aligned}
$$

The domain of a function is some interval along a line and any function that is defined on the interval is mathematically legitimate as long as it contains the original observations as a sub-set. Strictly speaking, the function is undefined for all other values of x and y. However, additional ordered pairs can be added to the set

$$
\begin{equation*}
f=\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots,\left(x_{n}, y_{n}\right) \tag{5}
\end{equation*}
$$

which provides an extension (specified as $f *$) of the function. It follows that this is essentially an interpolation process, or an extension of the observational data which has been performed by adding additional ordered pairs to the set. The only function that is actually known consists of a set of (x, y) pairs obtained by sampling.

For an extension of an observational function to be valid, it must actually be capable of representing the relationship between the dependent and the independent variables. In the present consideration, the selected function must be capable of representing the ecological component over the (x, y) geographical space. This requirement, if not met, does not preclude the use of a selected function as a starting point in developing an acceptable mode1. It may be that the relationship between the response variable and the independent variables are of little or no interest. Yet, as long as the function does an acceptable job of describing the variable in the sense of predicting or reproducing the data, then it is justifiable to use it. To date, no function has been developed which describes ecological variables previously discussed.

Sets of values for (x, y) obtained for the development of ecological mapping procedures were those in which sample data were acquired according to Figure 1. One hundred stands from a grassland site (10 m x 10 m) were subsampled for several vegetation and soil characteristics (Bonham, 1969 and 1970). An interpolation process was needed to fill in the areas between the sample points. In order to develop a procedure for mapping ecological variables with respect to a geographical region of interest, an orthogonal set of polynomials having x and y components was chosen to describe the 3 -dimensional space. The x and y components are needed

Figure 1. Field sampling design for stands ($10 \mathrm{~m} \times 10 \mathrm{~m}$) which were placed 200 meters apart.
to represent geographical coordinates. The generalized form of the selected model is

$$
\begin{gather*}
Z=\beta_{0}+\beta_{1} X+\beta_{2} Y+\beta_{3} X Y+\beta_{4}\left(3 X^{2}-2\right)+\beta_{5}\left(3 Y^{2}-2\right)+ \\
\beta_{6} Y\left(3 X^{2}-2\right)+\beta_{7} X\left(3 Y^{2}-2\right) \tag{6}
\end{gather*}
$$

A computer program was developed and combined with several subroutines for use in Ecological Mapping (ECOMAP). Two versions were developed in order to display results either digitally by a line printer or by microfilm plotter. Only the latter version is described here.

Data processing procedures for computer mapping of ecological variables are outlined in Figure 2. Step 1 indicates that a number of sub-samples have been taken at a particular sampling point in the (x, y) space. Means of ecological variables from the sampling points were then calculated and used as input for the computer mapping program.

The selection of a particular set of values to be used step-wise in the ECOMAP routine has been studied in detail and may vary according to particular needs of the user (Figure 2). A design region is best described as the region (or sub-region) over which the model will be applied to obtain estimates of the model parameters. An example of a particular design system is illustrated in Figure 3. The upper left hand corner of Figure 3 illustrates a 3×3 design region which is only one of many possible combinations. A 3 x 3 grid system has been found to give more efficient estimates of the variance of grassland components than either a 3×4, a 4×4, or a 3 x 5 grid system (Bonham, 1970).

The procedure used for computer mapping involves several steps before interpolation is actually carried out. Once a particular area grid system has been selected, then the sampling region is divided into

Figure 2. Data processing procedures for computer mapping of ecological variables.

set	points
\mathbf{k}	$12,13,14,22,23,24,32,33,34$
$\mathbf{k}+\mathbf{1}$	$13,14,15,23,24,25,33,34,35$
$\mathbf{k}+2$	$14,15,16,24,25,26,34,35,36$

Figure 3. Grid system formation procedures for mapping of ecological variables over geographical coordinates.
the smaller grids (in this case a 3×3) (Figure 3). The model parameters listed in equation (5) are then estimated using the data from this particular sampling region. By deletion of a row from the top of the design system and addition of a row at the bottom of the system, a number of different estimates of the response variable at a given point for (x, y) can be obtained in addition to a number of estimates for the model coefficients. That is, the first 9 points have as their centroid sample point 12 which is identified in the x, y space. The next 9 points have as their centroid sample point 13, also identified in the x, y space. This process is continued and gives a number of estimates of the model coefficients, as well as that of the response variable.

In this procedure, local surface fitting is applied to each of the sub-sets of the field data. Figure 3 illustrates that the process has been in progress for $k-1$ steps. At the $k^{\text {th }}$ step, the operation involves the sample points: $12,13,14,22,23,24,32,33,34$; with point 23 being the centroid (x, y). At $\mathrm{k}+1$ steps the sample points are respectively $13,14,15,23,24,25,33,34$, and 35 . At each of these steps, 9 data points are used to estimate the coefficients of equation (5). The estimate of these parameters of the model are then used to generate a finer grid and to interpolate for the response variable over the entire geographical region. In this way, one estimate of the response variable, Z, and its associated variance, $\sigma_{Z . X Y}$ is obtained for the four corners of the study region, two estimates are obtained for all the remaining border areas, and four estimates are obtained for all the interior areas (Figure 3).

An analysis of variance table for regression is printed out for each
centroid, allowing an evaluation of the model to be made for each sub-region. Averages of interpolated points are obtained along with their variances which are then contoured on microfilm.

If all the data in the (x, y)-space are normalized with respect to the centroid of each respective (x, y) then the variance of the predicted response variable, Z, is the same for each 9 -point grid in the study area. That this is so can be seen by observing the normalized values for x and y. Each 3 x 3 grid will have values as follows:

-1.0	0.	1.0
-1.0	0.	1.0
-1.0	0.	1.0

for values of x and:

1.0	1.0	1.0
0.	0.	0.
-1.0	-1.0	-1.0

for values of y. These values will be maintained for each 3 x 3 design region used if each (x, y) is normalized with respect to its centroid. This procedure is necessary for the components of equation (5) to be orthogonal to one another.

The inverse matrix (XX) will be the same for each sub-region which in turn gives the same variance for the estimated model parameters. Since x and y are assumed to be constant (that is their variances equal zero), the variance of Z (estimated by Z) is a function of the variance of the parameters only. That is,

$$
\begin{align*}
V(Z) & =V\left(\beta_{0}\right)+V\left(\beta_{1}\right) X^{2}+V\left(\beta_{2}\right) Y^{2}+V\left(\beta_{3}\right)(X Y)^{2}+V\left(\beta_{4}\right)\left(3 X^{2}-2\right)^{2}+ \\
& V\left(\beta_{5}\right)\left(3 Y^{2}-2\right)^{2}+V\left(\beta_{6}\right)\left\{Y\left(3 X^{2}-2\right)\right\}^{2}+V\left(\beta_{7}\right)\left\{X\left(3 Y^{2}-2\right)\right\}^{2} \tag{7}
\end{align*}
$$

and replacing $V\left(\beta_{i}\right)$ with $V\left(\hat{\beta}_{i}\right)$ in equation (6) will yield $V(\hat{Z})$. Since the constant multiplier, σ^{2}, was omitted the variance of the response variable is relative. Thus, all predicted or interpolated variables will have variance maps which are identical for each 3 x 3 grid. ECOMAP was written in Fortran IV and is ready for use on most computers using a Fortran IV compiler. However, the microfilm plotter sub-routines are specific to the CDC 6400 and may cause some problems on other systems.

Discussion

The program ECOMAP has been used in studies of ecological variables and their respective variations for a geographical area. The model used as an example in equation (5) interpolates values quite accurately for measures of density (number of individuals per unit area), cover, and above-ground biomass of common plant species. Rare or infrequent species restricted to micro-habitats will usually not be detected as often in equally spaced sampling and are not as accurately mapped. Unequal sample spacing can be used in ECOMAP to overcome this problem, but this requires more input data and, furtheremore, efficiency is sacrificed elsewhere. That is, equally spaced sample points occur on intersections of the lines dividing design regions and can be used in a maximum of nine design regions. In contrast, unequal sample points which do not occur on these intersections can be used only four times in different design regions (Figure 3). This trade-off must be considered before field sampling is carried out. Figure 4 illustrates a response surface generated from equation (5) for the cover of Bouteloua chondrosoides expressed as a percent of ground covered. Figure 5 illustrates contour slices taken from the response surface of Figure 4. Contour levels can be specified as input or automatically calculated as described in Appendix A. A bisectional view

Figure 4. Bouteloua Chondrosiodes Cover ($5 \times 5,1969$).

Figure 5. Bouteloua Chondrosiodes Cover ($5 \times 5,1969$).
(or profile) of the response surface at any point selected by the user is illustrated in Figure 6.

In particular, two methods can be used to study statistical variations. One obtains a relative estimate of σ^{2} calculated as

$$
\begin{equation*}
\operatorname{var}(\hat{z})=x^{\prime}\left(x^{\prime} x\right)-^{1} x \tag{8}
\end{equation*}
$$

This is contrasted to the estimate of an absolute variance obtained by

$$
\begin{equation*}
\operatorname{var}(\hat{z})=x^{\prime}\left(x^{\prime} x\right)-1 x \quad \sigma^{2} \tag{9}
\end{equation*}
$$

Unless σ^{2} is actually known, an estimate of it must be used in equation (8). The estimate of σ^{2}, s^{2}, can be obtained from the model and the data values by the formula

$$
\begin{equation*}
s^{2}=\sum_{\Sigma}^{n}\left(z_{i}-\hat{z}_{i}\right) / n-p \tag{10}
\end{equation*}
$$

where \hat{z}_{i} is obtained from the model and p is the number of parameters estimated in the model. Equation (8) can be used to estimate confidence intervals for a variable such as standing crop, soil pH , etc. However, the usual precautions of using regression models also apply here.

Figure 3 and the method of interpolation suggests that estimated variances for a particular point involves another constant, C. The value of C for all corners is 1 , for remaining border areas is 2 and for all interior points is 4 . Each set of 9 points gives one estimate of each parameter and all 3×3 grids adjacent to border areas provide two estimates of the response variable in interpolated areas unless the design is at one of the corners. In this case, only one estimate is available for interpolation. All interior regions of 3×3 grids provide four estimates of each point. The use of a constant then is necessary since an averaging process is used to estimate Z, the ecological variable.

Figure 6. Graph of Response Surface at $\mathrm{x}=800.000$.

Thus, the variance of an individual point becomes

$$
\begin{equation*}
\operatorname{Var}(\hat{z})=\frac{1}{C^{2}} x^{\prime}\left(x^{\prime} x\right)-1 x \sigma^{2} \tag{10}
\end{equation*}
$$

The estimate of σ^{2}, s^{2}, can be used in equation (10) if σ^{2} is unknown. Unless variances are of particular interest for computing confidence intervals, relative variances are just as useful for comparative purposes. Thus, equation (7) is used in ECOMAP and maps of relative variances are produced for further study. Figure 7 illustrates a relative variance response surface of percent cover of Bouteloua chondrosoides for the 1,000 acre study area. This figure illustrates some well-known statistical design concepts concerning variances. Smaller variances occur where more sample points are used toward the center of the design and larger variances occur toward edges or corners of treatment levels. Figure 8 illustrates contour levels of the variances of cover for the response surface of Figure 7. These maps are useful in the determination of areas of extreme ranges in values (large variance) or areas of homogeneity (low variance). Relative variances used in Figures 7 and 8 obscure this type of interpretation in detail. A larger grid (more points) may be necessary to obtain reasonably accurate maps of ecological variables within a specified area. Thus a preliminary study may be needed to determine grid size and shape for an optimum sampling design system for specific ecological variables.

The shortcomings of this mapping procedure are found mostly in the model as expressed in equation (5). Only one degree of freedom is available for estimating σ^{2} Z. XY from the ANOVA table. This is not serious if the main objective is to predict and not to test hypotheses about the

Figure 7. Bouteloua Chondrosiodes Cover Variance ($5 \times 5,1969$).

Figure 8. Bouteloua Chondrosiodes Cover Variance ($5 \times 5,1969$) .
model. The amount of total variation accounted for, R^{2}, is not as useful for evaluating the capability of the model when all but one data point is used in estimating model parameters. Another deficiency in the model is the fact that a polynomial can take on quite divergent values ranging from meaningless negative values to large positive values which cannot be interpreted. Otherwise, a three-dimensional model of the type in equation (5) appears to be adequate. Ecological responses are functions of their geographical location which is an integrator of all environmental variables and these responses need to be expressed in terms of coordinate function(s). ECOMAP is one approach to the problem.

Acknowledgements

The concepts and results of this study were developed from financial support provided by the U. S. Atomic Energy Commission through Contract AT(11-1)-2115 to Colorado State University, Dr. Charles D. Bonham, Principal Investigator. This support was gratefully appreciated. A number of personal communications were helpful in developing the basic approach to the problem. All of these suggestions were received with gratitude.

References

Bonham, C. D. 1969. A statistical study of basic ecological variations in a shortgrass prairie site. AEC Tech. Prog. Rpt. No. CO0-1821-1. 72 pp .

Bonham, C. D. 1970. A statistical study of basic ecological variations in a shortgrass prairie site. AEC Tech. Prog. Rpt. No. CO0-1821-2. 26 pp.

Davis, Phillip J. 1963. Interpolation and approximation. Blaisdell Pub. Co., Mass. 393 pp.

APPENDIX A
ECOMAP DESCRIPTION
AND LISTING

INPUT DATA FOR PROGRAM ECOMAP

Card Set	Column	Format	Variable
1	3	I1	NCI, Flag indicating coordinate system used.
			if $=0$, indicates rectangular, if $\neq 0$,
			indicates polar. (If polar coordinates
			were used in sampling).
	4-6	I3	$N J$, the total no. of columns of sample points.
	7-9	I3	NA, the no. of basis functions to be used in
			the model. These must correspond to those
			in Sub-routine Basis.
	10-17	F8. 0	DX, Sample spacing normalization constant in
			the x -direction. (The average spacing
			between sample points in the x-direction).
	18-25	F8. 0	DY, Sample spacing normalization constant in
			the y -direction.
	26-33	F8. 0	SF, the area on the xy plane represented by
			one interpolation point.
	34-41	F8. 0	DTF, response data conversion flag. if $=0$,
			no conversion; if $=1$, data multiplied by
			CF
	42-49	F8. 0	CF, response data conversion factor.
2	1-5	I5	IN(1), Number of sample points in column 1.
	6-10	I5	IN(2), Number of sample points in column 2.
			---repeated NJ times

Card

4 -----contains 1 card for each sample point as follows: (May be computed and punched by ECOGRID which is listed)

1-8	F8.0	$X(I, J) x$ coordinate of each sample point.
9-16	F8. 0	$Y(I, J)$ y coordinate of each sample point.
17-24	F8.0	XMINI (I, J) ${ }^{\text {P-coordinate }}$ limits
25-32	F8.0	XMAXI (I, J) of the design region centered
		on each sample point.
33-40	F8.0	YMINI (I, J) $)^{\text {y }}$-coordinate limits
41-48	F8.0	YMAXI (I, J) of the design region centered

Card
Set
Column
Format
Variable
9 -----Optional, used only when NCZ is negative
1-8 F8.0 CLVL (1), value of contour level no. 1.

9-16 F8.0 CLVL (2)
17-24 F8.0 CLVL (3)
repeated -ncz times.

10 ----Optional, used only when NPLOT is greater than 0.
1-8 F8.0 PLOT (1), --- if positive $=$ the X value of a requested yz plot. ---if negative $=$ the Y value of a requested $x z$ plot.

8-16 F8.0 PLOT (2)
repeated nplot times.

11 1-50 5A10 TITLE, the holerith identifier of the response being mapped.

51-60 Al0 ZUNITS, the holerith identifier of the units of the response.

61-70 Al0
XUNITS, the holerith identifier of the x and y coordinate units.

12 --_-Optional, used only when NVAR is equal to 0

Additional Details

1. The sample point coordinates and response values at each point must be read in in the following order, based on the diagram below: (The numbers by the dots are the order)

XMIN, YMAX		XMAX, YMAX	
.1	.5	.9	.13
.2	.6	.10	.14
.3	.7	.11	.15
.4	.8	.12	.16
XMIN, YMIN		XMAX, YMIN	

In other words, the data is read in column by column, starting with the left column, and within each column starting at the first point.
2. IFM must be a real (floating point) format and specifies the reading in of each point in one column.
3. The design system must be set up so there is no design region centered about the first or last point in any row or column.
---if there is no design region about a point, merely leave XMINI, XMAXI, YMINI, and YMAXI blank.

LIMITS FOR ECOMAP
No. of sample points ≤ 100 (10 x 10 grid)
No. of interpolation points ≤ 8281 (91 x 91 grid)
No. of basis functions ≤ 9
No. of points within a design region ≤ 15
No. of requested $Y Z$ and $X Z$ plots ≤ 10
No. of contour levels ≤ 25

NOTES ON ECOMAP

To increase the limit of the number of points within a design region, increase the dimensions of $X S, Y S, Z S$, and the second dimension of DTRAN to the desired limit in all common/MATOD/statements. In DESYS it will be necessary to increase the dimensions of $X M, Y M, X M P$, and $Y M P$ to the desired limit.

TO ADD EXTRA SAMPLING POINTS

TO A GRID WITH EQUAL SAMPLE SPACING

1. Read in the x and $y\{X(I, J)$ and $Y(I, J)\}$ coordinates with the first column to the left of the point.
2. Within that column read all points in in order from north to south.
3. Read in the response values $Z(I, J)$ in the same order.

STEPS FOR SETTING UP GRID

SYSTEM FOR UNEQUAL SAMPLE SPACING

1. Plot all sampling points on a map.
2. Draw a rectangular boundary of the area to be contoured.
3. Decide on the increment between successive design regions in the x and y directions (the design regions must be equally spaced!!!)
4. Draw the lines dividing the design regions on the map. (There must not be more than 15 points within a design region).
5. Draw a dotted line down the middle of the left-most column on the grid before you.
6. Now each vertical line (including the dotted line) defines the boundaries of a column. The coordinates of each point are read in column by column from left to right, and in order from top to bottom within each column. Pick a sampling point near the center of each
design region and read in the x and y limits of the region with the coordinates of that sampling point. The sampling points picked for this purpose cannot be in the first or last column, or the first or last point in any column!!! For the points not used for reading in design region limits leave XMINI, XMAXI, YMINI, and YMAXI blank.
7. Read in the response values at each sample point in the same order as you read in their coordinates.

PROGRAM ECOMAP (INPUT, OUTPUT,TAPES=INPUT,TAPE6=OUTPUT,FILMPL ORJECTIVE*\#************\#\#*****
FROM A DIS PROGRAM COMPUTES INTERPOLATED, REGULARLY SPACED 2 VALUES FROM A DATA SET IF SAMPLENS VALUES IHE REGION OF INTEREST, PERFORMING A 3 DIMENSIDNAL REGRESSION $(Z=F(x, Y))$, AND CALCULATING THE INTERPOLATION VALUES. VARIANCE ESTIMATES ARE OBTAINED FOR EACH POINT, THEN OVERLAPPING INTERPOLATION AND VARIANCE VALUE
AVERAGED. THE BASIS FUNCTIONS USED FOR REGRESSION ARE BOX, S IRTHOGONAL POLYNOMIALS.

SCOPE******************

the program hill accept either a rectangular or polar COORDINATE SYSTEM, WITH EVENLY SPACED OR SCATTERED SAMPLE POINTS. HOWEVER THE DESIGN REGIONS MUST BE OF EQUAL SIZE AND EQUALLY SPACED. THE PRESENT PROGRAM LIMITS THE USER TO 100 SAMPLE POINTS,

ARIABLE LIST**************************\#
A(1) = COEFFICIENTS OF BASIS FUNCTIONS.
AVGMAT $(1, J)=$ ARRAY OF INTERPOLATED RESPONSE VALUES.
CF = RESPONSE VALUE CONVERSION FACTOR
DINV $=$ INVERSE OF SQUARE DESIGN MATRIX $(x P * X) * *-1$.
DTF $=$ RESPONSE DATA CONVERSION FIAG
DTF = RESPONSE DATA CONVERSION FLAG --IF =O, NO CONVERSION.
DX, DY = SAMPLE SPACING NORMALIZATION CONSTANTS (X AND Y
COORDINATES
DXT, DYT $=$ INTERVAL
YPACING RETWEEN INTERPOLATION POINTS (X AND
IC = NO. OF POINTS WITHIN THE DESIGN REGION.
IN(J) = TOTAL NO. OF SAMPLE POINTS IN COLUMN $J(J=1,2, \ldots \ldots$.....N)
IN(J) $=$ TOTAL NO. OF SAMPLE POINTS IN COLUMN J I $J=1,2, \ldots$
INVCK $=$ INVERSION CHECKPL-IF MATRIX IS SINGULAR, $=-1$.
ITN, JTN = TOTAL NO. ---OF INERERPOLATION POINTS IN THE Y AND
LINE = THE NUMBER OF THE LINE TO be printed on the output page NA = TOTAL NO. OF BASIS FUNCTIONS TO BE USED.

$\mathrm{NF}=$ YOTAL NO. OF BASIS FUNCTIONS USED.
$\mathrm{NJ}=$ TOTAL NO. OF COLUMNS OF SAMPLE POINTS.
pageno = number of the present output page.
SF = THE AREA ON THE XY PLANE REPRESENTED BY ONE INTERPOLATION TITLE POINT.
VARLE $=$ HDLERITH RESPONSE PARAMETER IDENTIFIER.
$=$ ARRAY OF VARIANCE FOR THE INTERPOLATED RESPONSE.

C $\quad X(1, J), Y(1, J)=x$ AND Y COORDINATES OF EACH RESPONSE VALUE ZIT, $X C, Y C=X$ AND Y COORDINATES OF THE DESIGN SYSTEM CENTROID. XINC, YINC = INCRIMENT IIN X AND Y OIRECTIONS) BETWEEN SUCCESS xIVC, IVE DESIGN SYSTEMS
XMINI(I,J), XMAXIII,J) $=x$ COORDINATE LIMITS OF THE DESIGN XMINT, REGLON CENTERED ON THE 1 , J SAMPLE.
hhich interpolation values are calculatedi in the x direction. $X P, Y P=$ COORDINATES OF AN INTERPOLATION POINT.
XS(IC), YS(IC) = COORDINATES OF ALL POINTS WITHIN THE DESIGN REGION YMINI(I, J), YMAXI(I,J) = Y COORDINATE LIMITS OF THE DESIGN
YMINT, YMAXT = LIMITS OF THE TOTAL INTERPOLATION REGION IN THE
Y OIRECTION.
$2(I, J)=$ RESPONSE VALUE OF THE I, J SAMPLE. VALUE OF -1 inoicates missing data at that sample point.
ZSIIC) = RESPRNSE AT EACH POINT WITHIN THE DESIGN REGION
INTEGER PAGENO
DIMENSION $\times(10,10), Y(10,10), 2(10,10), X M I N I(10,10), X M A X I(10,10)$,
1 YMINI(10,10), YMAXI(10,10), IN(10), AVGMAT(91,91), IFM(8), A(9)
DIMENSION TITLEES
COMMON VAR(91,91)
COMMON/MATOD/XS(15),YS(15), DTRAN(9,15),25115
COMMON/ALL/NF,BASE(9),DINV(9,9),XC,YC,DX_OY,INVCK
COMMON/MTOVR/XMNS, XPLS,YMNS,YPLS
GMMON/LINENO/LINE, PAGENO, TITLE
LOGICAL FIRST
C ${ }^{\text {C*****INPUT DATA }}$
c ---READ ARRAY SIZES, LIMITS, AND CODES.
1 READ (5,201) NC1,NJ,NA, DX,OY,SF,DTF,CF, (IN(J), J=1,NJ)
NT, YMAXT, ITN, XINC, YINC
-READ GRID systems
NO $\quad \mathrm{J}=1, \mathrm{~N}$
$\mathrm{NI}=\mathrm{IN}(\mathrm{J})$
READ (5,202) $(X(1, J), Y(1, J), X M I N I(1, J), X M A X I(1, J), Y M I N I(1, J)$, 1 YMAXI(I, J), $i=1$,NI
c ---Initial conditions.
CALL FRAME
DO 102 KKK $=1$
$\begin{array}{ll}\text { DO } 102 & \text { KKK }=1,91 \\ \text { DO } & 102 \\ \text { KKKK }\end{array}$
VAR (ККк, ККKK) $=0$.
$102 \operatorname{AVGMAT}(K K K$, KKKKK $)=0$, LINE $=0$
c ---format fir reading field data.
READ 15,204)IFM
c ---READ FIELD DATA.

- ---READ $\quad 9010 \mathrm{~J}=1, \mathrm{NJ}$
$\mathrm{Ni}=1 \mathrm{~N}(\mathrm{~J})$
REAOI 5, IFM $)(Z 11, J), 1=1, N 1$
IF $(E O F(5))$
IF(EOF (5)) 109,10
c ---read data identifier.
READ(5,205) titte
C ${ }_{\text {C** }}$
***DATA conversion if requesteo.
IF (DTF.EQ. 1)11,12
CALL DATA $(2, N J$, IN,CF)
12 CONTINUE

****Calculate distance betheen interpolation points.
DXT $=(X M A X T-X M I N T) / F L D A T(J T N-1)$
DYT $=$ (YMAXT-YMINT)/FLOAT(ITN-1
FIRST=. TRUE.
c
C*****PERFORM OPERATIONS ON ALL DESIGN REGIONS
$0084 \mathrm{~J}=2$, NJM
NIM $=$ IN(J) -1
XMNS $83 \quad 1=2$,NIM
XPLS $=\times$ MAXI $(1 ; J)$
YMNS = YMINIII, J
YPLS = YMAXIT

$$
\begin{aligned}
& \mathrm{c} \\
& \mathrm{C} * * \\
& \hline
\end{aligned}
$$

C*****FIND ALL POINTS WITHIN THE PRESENT DESIGN REGION, AND PRESERVE te their coordinates and response values.

IF(X(1,JJ).GT.XPLS) GO TO 42
IF(X(1,JJ).LT.XMNS) GO TO 41
NI = IN(JJ)
00 $40 \mathrm{II}=1$. NI
IFIY(II,JJJ. LT. YMNS) GO Tn 41
F(LIII,JJ).LT. 0 .1 GO TO 40
$\mathrm{IC}=\mathrm{IC}+1$

40 CONTINUE
41 CONTINUE
$42 \begin{aligned} & \mathrm{NP}=1 \mathrm{C} \\ & \mathrm{NF}=\mathrm{NA}\end{aligned}$
IF(NP.LT.NA) $N F=N P$

C*****CONVERSION FROM POLAR TO RECTANGULAR IF NECESSARY.
IF(NC1.NE.O) CALL CONVRT(NP)
C****NORMALILE POINTS IN THE DESIGN REGION AND COMPUTE DESIGN MATRIX, SOUARE DESIGN MATRIX, AND ITS INVERSE.

FIRST = FALSE.

c --IF DATA IN POLAR, more conversions.
c ---IF DESIGN MATRIX SINGULAR
IF IINVCK.LT.0igo to b3 ing skip regression.
O DDMPUTE CDEFFICIENTS DF basis functions.
A(11) $50=0$, N
$0055 \quad J=1$, NP
5 A(II)=A(II)+DINV(II,K)*DTRAN(K,JJ)*ZS(JJ)
C
*REGRESSION.
CALL REGRES (NP, SIGZXY, SIGZ, A)
C**\&**PERFDRM CALCULATIONS FOR EACH INTERPGLATION POINT WITHIN THE DESIGN
\mathcal{C} MJT $=$ REGION.
MJT $=($ XMNS-XMINT $) /(.99999 * D X T)+2$.
NJT $=($ XPLS-XMINT $) /(.99999 * D X T)+1$.
MIT $=($ YMAXT-YPLS $) /(.99999 * D Y T)+2$.
NIT $=($ YMAXT-YMNS $) / 1.99999$ \#DYT $)+1$.

IF (MIT.EQ-2) MIT OD B2
YP $=$ YMAXT - FLDAT(IT-1)*DYT
DD ${ }^{\text {B1 JT }}=$ MJT, NJT
XP $=$ XMINT + FLOATI
c ---CODRDINATE CONVERSION (FOR POLAR COORDINATES)
IFINCI.EQ.0) GO TO 70
II J = 57.2957795*ATANZ (YP, XP)
$12=1$
$12=1$
L2=1
IFITIJ MMIMI, Y) $\mathrm{L}=2$
IF (YMAXI(1,J).LT.0.) 60,61
60 GO TO $(62,84), \mathrm{L1}$
$61 \mathrm{GO} \mathrm{IO}(62,81), \mathrm{LI}$
62 IF (YMINIII,J).LLT.0.1 71,72
71 GO TO $164,841, i 2$
72 60 TO $164,821, L 2$
64 RIJ=SQRT(XP**2+YP**2)
IFIRIJ.GT. XMAXI(I,J) GO TO 82
$70 \begin{aligned} & \text { CONTINUE } \\ & \mathrm{XIN}=(\mathrm{XP}-\mathrm{xC}) / D \mathrm{D}\end{aligned}$

- YIN=(YP-YC)/DY
---bASIS COEFFICIENTS FOR PRESENT interpalation point
is(xin,yin)
c ---compute 2 value at present interpolation point. DO $76 K=1, N F$
$2 I N=Z I N+A(K) * B A S E(K)$
76 CONTINUE
aVGMAT(IT,JT)=AVGMAT(IT,JT)+ZIN
c ---compute variance of present interpolation value.
78 SUM=SUM+BASE(IV)*DINVIIV,IV)*BASE(IV)
VAR(IT, JT)=VAR(IT, JT) +SUM
81 CONTINUE
日2 CONTINUE
82 CINTINUE
83 CONTINUE
34 CONTINUE
C
****average overlapping interpolation values and variances. INC Y=YINC/1.99999*DYT)
INC $X=X$ INC / $1.99999 * D X T)$
DO $103 \mathrm{~J}=1$, JTN
$00103 \mathrm{I}=1$, ITN
IF II.LE.(INCY+1).O.I.GE. 1 ITN-INCY+1)1) 104,105
104 IF (J.1E.(INCX+1):O.J.GE.(JTN-INCX+1)) 103,106
105 IF (J.LE.(INCX +1$), 0 . J . G E \cdot(J T N-I N C X+1)) 106,107$
106 AVGMAT $(1, J)=\operatorname{AVGMAT}(1, J) / 2$.
VAR $(I, J)=V$
GO Tn 103
$107 \operatorname{AVGMAT}(I, J)=\operatorname{AVGMAT}(1, J) / 4$
VAR(1, J)=VAR(1,J)/16.
$\mathrm{C}_{\mathrm{C}}^{\mathrm{C}}{ }^{10}{ }^{10}$
C****\#Make response surface and contour plots of interpolated response CALL PRINPLTIANGNAT, ITN, JTN, SF, DXT, DYT, XMINT, YMAXT, XINC, YINCI GO TO ${ }^{6}$
109 CALL EXI
201 FORMAT 13
01 FORMAT (3 $3,5 F 8.0 /(1515)$
202 FORMAT(6F8.0)
204 FORMA $2(2 F 8.0,5 \times, 13), 2 F 8.0$
205 FDRMAT(5A10)
END

SUBROUTINE DATA (Z,NJ ,IN,CF)
C THIS SUBROUTINE MULTAPLIES INPUT DATA (ZII,JI) BY A CONSTANT
c CONVERSION FACTOR (CF).
dimension intiol,zilio,10)
DO $10 \quad J=1, N$
NI $=1 N(J)$
OO $10 \mathrm{I}=1, \mathrm{NI}$
$10 \begin{aligned} & 2(1, J)=2(1 ; N) \\ & \text { CONTINUE }\end{aligned}$

- Continue

RETUR
END

SUBRDUTINE BASIS (X.y
COMPUTES VALUES OF all basis functions at defined point (x, y). COMMON /ALL/NF,BASE(9),DUM(B6)
1 $\operatorname{HASE}(1)=1$.
2 BASE (2) $=x$
3 BASE (3) $=Y$
4 BASE $(4)=X$
5 BASE $(5)=3 . * X * * 2-2$.
5 BASE
6 BASE $(6)=3 . * X * * 2-2$.
7 BASE $(7)=$ BASE $(5) \neq Y$
8 BASE $B)=$ BASE 6$) * x$
8 BASE $(8)=\operatorname{BASE}(6) * X$
9 BASE $(9)=\operatorname{BASE}(6) \neq \operatorname{BASE}(5$ RETURN

c ---If the last set of normalized x,y coordinates was the same as this SET CONTINUE, OTHERWISE RECOMPUTE XMP,YMP,BASE, AND DTRAN.
$A=A B S(X M(1)-X M P(1))$
$B=A B S(Y M(1)-Y M P(1))$
IFIA.GE.O.0NO1.OR.B.GE.0.0001) GD TO 19
$\mathrm{J}=\mathrm{J}+1$
GO TO 28
$19 \begin{aligned} & \operatorname{XMP}(I)=X M(1) \\ & Y M P(I)=Y M(1)\end{aligned}$ $X B=X M(I)$
$Y_{B}=Y M(I)$
5 CALL BASIS(XB,YB) $0027{ }^{2=1}$,NF OTRAN(L, 1) $=$ BASE(L.)
27 CONTINUE
28 CONTINUE
C ---If present oesign matrix the same as the last, return. IF (J.EO.NP.AND.NP.EQ.NPP) RFTURN LINE LL INE +6
CALL PAGE LINE=1
C ---WRITE CENTROID LOCATION.
WRITE $(6,220) \mathrm{XC}, \mathrm{YC}$
C C *****COMPUTE SQUARE DESIGN MATRIX.
$\begin{array}{ll}\text { DO } \\ \text { DO } & 38 \mathrm{I}=1, \mathrm{NF} \\ \mathrm{J}=1, \mathrm{NF}\end{array}$
IFIJ.LT.I) GO TO 37
XP $35 \mathrm{~K}=1$) $=0$.
5 XPXIN(I, J)=XPXIN(I,J)+DTRAN(1,K)*DTRAN(J,K) XPXIN(J, 1) $=$ XPXINII, 1
7 CONTINU
C C*****COMPUTE INVERSE of the square design matrix $\mathrm{NPP}=\mathrm{NP}$
$\mathrm{NFI}=\mathrm{NF}$ NFI=NF
CALL INVERS (XPXIN,NFI)
c ---IF MATRIX SINGULAR, PRINT DIAGNOSTIC AND STOP. IFINFI.LT.O) GO TO 44
C****\#PRINT DESIGN MATRIX TRANSPOSE, AND INVERSE MATRIX
$\underset{\text { CALL PAGE }}{\text { LINE }}$ LINF
WRITEIG,221)
DO $40 \mathrm{I}=1, \mathrm{~N}$
LINE=LINE+(NP-1)/10+1
WRITE(6,225) (DTRAN(I,J),J=1,NP)
CONTINUE
40 CONTINUE LINE=LINE+3

CALL PAGE
WRITE $(6,222)$
DO $41 \quad 1=1, N F$
LINE=LINE+(NF-1)/10+1
WRITE $(6,225)($ XPXINII,J), J=1,NF)
41 CONTINUE
44 WRITE $(6,224)$
LINE=LINE+1
CALL PAGE
RETURN
220 FORMATI44H THE SYSTEM MATRICES WITH DESIGN CENTER AT 1 ,
221 FORMATI/17H SYSTEM TRANSPOSEN
222 FDRMATI/12H XPX INVERSE/I
224 FDRMAT (54H X X X MATRIX IS SINGULAR, FURTHER CALCULATIONS DELETED.)
225 FDRMAT $11 X, 10 E 13.5$) FORMATIIX,10E13.5) END

SUBROUTINE INVERS (A,N)

this subroutine inverts matrix a and puts the result back into a. COMPUTATION IS DONE IN DOUBLE PRECISION USING MATRIX S. TO A. COMPUTATION IS DONE IN DDUBLE PRECISION USING MA
N = INPUT TO THE ROUT INE AS THE ORDER OF THE MATRIX A.
----IIS MADE $=-1$ IF THE MATRIX IS SINGULAR.
OIMENSION A $(9,9), S(9,18)$
ODUBLE PRECISION S, BUFF, DVH, FPY
$K=N+N$
$300{ }^{5} \mathrm{~J}=1, \mathrm{k}$
$S(1, J)=0.00$
5 CONTINUE
10 S(1, J)=DBLE(A) $1, \mathrm{~J})$)
$\left(\begin{array}{l}N=1+N \\ S(I, I N)=1.00\end{array}, ~\right.$
12 Continue ite inverse
15 DD $150 \quad 1=1$, N $L=1$
$M=1+1$ $M=1+1$
$\Delta N=1$
20 1F (SII, 1).NE.0.0) so To 45

28 IF (LE-N) 26,26,900
800 DO $35 J=1, \mathrm{~K}$
$B U F F=S(1, J)$
$S(1, J)=S I L E, J$
SILE, J)=BUFF
35 CONTINUE
41 go Ta 20
45 DVH $=5(1,1)$
$00 \quad 46 \quad J=1, k$
46
$46 \begin{array}{ll}s(1, J)=s(1, J) \\ s(1,1) & =1.000\end{array}$
48 IF (I.GE.N) GO TO 149
$49 \mathrm{FPY}=\mathrm{SIM}(\mathrm{L})$
IF (FPY, EO.O.00) GO TO 75
$500070 \mathrm{~J}=1, \mathrm{~K}$

70 CONTINUE
75 IF IN=M+1
$100 \mathrm{M}=\mathrm{M}+1$
120 GD TO 49
149 CONTINUE
149 CONTINUE
DO $385 \quad \mathrm{I}=2, \mathrm{~N}$

$L=1$ $M=1-1$

$350 \mathrm{FPY}=5(\mathrm{M}, \mathrm{L})$
IF (FPY.EQ.0.00) GO TO 375
351 DO $370 \mathrm{~J}=1, \mathrm{~K}$
BUFF=FPY*S(I,J)
$S(M, J)=S(M, J)-B U F F$
370 CONTINUE
375 IF (M.LE.1)
GO TO
384
$380 \mathrm{M}=\mathrm{M}-1$
384 CONTINUE
384 CONTINUE
$\begin{array}{ll}390 & 00402 \quad 11=1, N \\ 1 L\end{array}$
395 DO $400 \mathrm{Jl}=1 . \mathrm{N}$
$395 \mathrm{NK}_{\mathrm{KK}=\mathrm{N}+\mathrm{JI}} \mathrm{Ji}=1$

400 CONTINUE
402 CONTINUE
no inverse
$900 \begin{gathered}\mathrm{N}=-1 \\ \text { RETUR }\end{gathered}$
RETUR
END

subroutine convrting

${ }_{\mathrm{C}}^{\mathrm{C}}$ converts X, y in polar coordinates to rectangular coordinates. COMMON/MATOD/X(15),Y(15), DUM(150)
$\mathrm{DD} 5 \mathrm{I} \quad \mathrm{I}=1$, NP
$\mathrm{R}=\mathrm{Y}(1)=0.017453293$
$R=Y(I) * 0$
A
A
$A=x(1)$
$x(1)=A * \cos (R)$
Y(I) $=A * S I N(R)$
5 CONTINUE
RETUR
END

SUBROUTINE DEFINE

Converts the limits of the design region from polar to rectangular
COOKDINATES.
XN = MINIMUM \times (INPUT AS A RADIUS, OUTPUT IN CARTESIANI.
XP $=$ MAXIMUM X MIMUM Y (INPUT as an angle, converted to cartesian).
$Y P=\operatorname{MAXIMUM} Y-Y$,
YMON
$A=X N$
$C=Y N * 0.017453293$
$D=Y P * 0.017453293$
IFI(YN.GT.O.1.AND.(YP.GT.O.1) GO TO 17
IFI(YN.LT.O.).AND.(YP.LT.O.)) GO TO 12
$Y N=B * S I N(C)$
$Y P=B * S I N(D)$
$X N=A * \operatorname{Cos}(C)$
(F(ABS(YN). LT. ABS(YP)) $X N=A * \operatorname{COS}(D)$
RETURN
$Y N=B * S$
$\mathrm{YN}=\mathrm{B}=\mathrm{SIN}(\mathrm{C})$
$\mathrm{YP}=\mathrm{A} * \mathrm{SI}(\mathrm{D}(\mathrm{D})$
$Y P=A * S N(D)$
$X N=A * C O S(C)$
$\mathrm{XP}=\mathrm{B}=\mathrm{CCOS}(\mathrm{D})$
RETURN

7 | RETURN |
| :--- |
| $Y N=A * S I N$ |

$\quad \begin{aligned} & =A * S I N(C) \\ & Y P=B * S I N(D)\end{aligned}$
$X N=A * \cos (D)$
$\mathrm{XP}=\mathrm{B} * \operatorname{Cos}(\mathrm{C})$
END

```
    SUBROUTINE REGRES(NP,SIGZXY,SIGZ,A)
    C COMPUTES FACTORS DF REGRESSION.
c
    ****
    A(I) = COEFFICIENTS OF RASIS FUNCTIONS.
D(I), J) \(\quad\) INVERSE OF THE SQUARE DESIGN MATRIX.
    NF = NO. OF RASIS FUNCIIONS USED.
NP \(=\) NO. OF POINTS IN THE DESIGN REGION.
    NP \(=\) NO. OF POINTS IN THE DESIGN REGION.
Z(1) \(=\) RESPONSE VALUE AT THE POINTS HITHIN THE DESIGN REGION.
```



```
    FRGR \(=\) REGRESSION/RESIDUE OF PLANE.
RFIT \(=\) RESIDUE OF FIT \(=(Z-Z C A I) * 2\).
    RGRSN \(=\) REGRESSION \(=\) RESIDUE OF (PLANE-FIT)
    RGRSN \(=\) REGRESSION \(=\) RESIDUE OF (PLANE-F
RPLANE \(=\) RESIDUE OF PLANE \(=(Z-Z B A R) * * 2\).
    SIGZ = VARIANCE OF \(Z\).
    SIGZXY = VARIANCE OF Z. \(\times\) YY.
ZBAR \(=\) aVERAGE \(Z\) WITHIN THE DESIGN REGION.
    ZCAL = PREDICTED 2 (FROM REGRESSION).
        ******************************************
        COMMON/ALL/NF,B(9),DI(9,9),XC,YC,DU
COMMON/MATOD/DUM( 30 ), D(9,15),2(15)
        COMMON/LINENO/LINE, PAGENO
    DIMENSIDN A191, FBASIS (9)
    DATA FBASIS/ 1 H , \(\mathrm{HX}, 1 \mathrm{HY}, 2 \mathrm{HXY}, 7 \mathrm{H} 3 \mathrm{X} * * 2-2,7 \mathrm{H} 3 \mathrm{Y} * * 2-2\)
    9H3YX**2-2Y,9H3XY**2-2X,BHB(5)B(6)/
C C **中**INITIALILE
    RNP \(=\) NP
    RF1 \(1 T=0.0\)
\(2 B A K=0.0\)
    \(28 A R=0.0\)
\(250 S=0.0\)
c
perform calculations
    \(D O\)
\(Z A B R=Z B A R+2(I)\)
    2505=2SQS+2(1)**2
    2CAL \(=0.0\)
    OD \(10 \mathrm{~K}=1\), NF
    - \(2 C A L=Z C A L+A(K) * D(K, I)\)
        RFIT=RFIT+(Z(1)-ZCAL)**2
IF(INP-NF).EQ.0) GO TO
        SIG \(2 \times Y=R F I T /(N P-N F)\)
    60 TO 13
SIGZXY=-0.
    3 RPLANF=Z50S-ZBAR**2/RN
        SIGL=RPLANE/(NP-1)
        RGRSN =RPLANE-RFIT
        IFIRPLANE.ED.O.) GO TO 14
        GO TO 15
    FRGR=0.
    5 LBAR = ZBAR/RNP
```

${ }^{\mathrm{c}}$
LINE = LINE +12
LINE $\mathrm{IN}=\mathrm{IINE}$
CALL PAGE
WRITE(6,1) XC,YC,RPLANE,RFIT,RGRSN, FRGR
IF(SIGZXY-EQ.-0.) GO TO
WRITE(6,2) SIGZXY, SIGZ, ZBAR
GO TO 17
16 WRITE $(6,4)$ SIGZ, ZBAR
17 WRITE $(6,3)$ (A(K), FBASIS (K), K=1, NF)
 $20 \mathrm{~N}=*$, E17.9,1* REGRESSION/RESIDUE DE OF FIT = *,
2 FORMAT (* SIGMA SQUARED OF Z.XY $=*$.E17.9; $\%$ SIGMA SQUARED OF $Z=$

3 FORMAT $*$ OZHAT $=$ *,Ell.5,1X,A1,* + *,2(E11.5,2X,A1,* + *),E11.5

4FORMATI* SIGMA SQUARED OF Z.XY = (NO ESTIMATE) SIGMA SQUARED 1 OF $Z=*, E 17.9, * \quad$ ZBAR $=*, E 17.61$ END

subroutine page

${ }_{\mathrm{C}}^{\mathrm{C}}$ prints title and page number at the top of each dutput page INTEGER PAGENO
OIMENSION TITIE
COMMON/LINENO/LINE,PAGENO,TITLE
C if the bottom of thf present page has been reached, print the title ON THE NEXT PAGE.
(LINE.GT. 56) 5,10
5 LINE=0
AGENO=PAGENO+1

10 RETURN
END

SUBROUTINE PRINPLTIZ,NI,NJ,SF, DXT, DYT, XMINT, YMAXT,XINC,YINC,
THIS SUBROUTINE PRINTS A CONTOUR AREA SUMMARY, PLOTS A 30 RESPONSE SURFACE, AND PLITS A CONTOUR MAP FOR BOTH THE VARIABLE BEING
EVALUATED (Z) AND ITS VARIANCE (VAR). IT WILL ALSD PLOT ZD XZ
OR YZ PLOTS OF THF VARIABLE RESPONSE IF REQUESTED.

C*****ARGUMENT LIST******************
dXt, DYt = THE DISTANCE BETHEEN THE Z points IN THE X AND Y directions. LABEL = THE LABEL USED FOR PLOTS.
nCV = THE NO. OF CONTOUR LEVELS OF THE RESponse VAR lance plot (max $=15$
NCZ $=$ THE NO. OF CONTOUR LEVELS ON THE RESPONSE PLDT (MAX=15),
--IF POSITIVE CONTOUR LEVELS ARE CALCULATED USING LMIN, ZMAX, AND NCZ.
--- IF NEGATIVE, CCNTDUR LEVELS ARE READ IN
NIX, NIY $=$ THE THE NO. OF SAMPLE POINTS BETHEEN LINES PLOT RESPECTIVELY
30 RESPONSE SURFACE IN THE X AND Y DIRECTIONS. PLOTTED ON TH
NPLOT = THE NO. OF OPTIONAL $20 \times Z$ ANO YZ PLITS OF THE RESPONSE NVAR $=$ FLAG FOR
--1F = 0, YARIANL RESPONSE SURFACE AND CONTOUR PLOTS ----1F = 0, VARIANCE PLOTS PROVIDED.
---IF $=1$, VARIANEE PLOTS NOT PROVIDED.
PLOT(1) $=-1 F$ POSITINE, THE X VALUE OF A REQUESTED YZ 20 PLOT. SF = THE --IF NEGATIVE THE
TITLE = THE HILERITH IDENTIFIER OF Z
XINC, YINC $=$ INCRIMENT IIN X AND Y OIRECTIONS) BETHEEN SUCCESS
XMINT, YVE DESIGN SYSTEMS.
MINT, YMINT = THF MINIMUM X AND Y values (THE COORDINATES OF $2(1,11)$

ZMIN, ZMAX = CONVENIENT MINIMUM AND MAXIMUM Z VALUES IALSO THE
ZPTSII) $=$ AN ARRAY CUNTAINING THE TOTAL AREA BOUNDED BY EACH
CONTOUR LEVEL
ZUNITS $=$ HOLERITH IDENTIFIER DF THE RESPONSE VALUE UNITS.
ZUNITS = HOLERITH IDENTIFIER DF THE RESPDNSE VALUE UNITS.
DIMENSIUN Z(91,91),ZPTS(25),TITLE(5),LABEL(8), PLOT(10),CLVL(25) COMMON/LINENO/LINE, PAGENO,TITLE
LINE $=60$
CALL PAGE
$\stackrel{c}{c}{ }_{c}$
READ(5,101) ZMIN, ZMAX,NCZ,NCV,NPLOT,NIX,NIY,NVAR
f(F)NCL.GT.0) GO TO 3
$1=-$ NCZ
READ (5,102) (CLVL(J), J=1,1)
$\left.\begin{array}{l}\text { READ (5,102) (PLOT(1), } \\ \text { NSTOP }=0\end{array}\right)$
C****\#INITIAL CALCULATIONS
$\mathrm{FNJ}=\mathrm{NJ}$
$\mathrm{FNI}=\mathrm{N}$
FNI $=$ NI
NS $=($ (
NSI = ((FNI-1,) *DYT)/(.99999*YINC)
$x \times X=(F N J-1) * D X T+,X M I N T$
$Y Y Y=Y M A T$
YYY $=$ YMAXT $-($ FNI $-1.1 * D Y T$
ZINC=0.
$2 \mathrm{DO} 4 \mathrm{I}=1,25$
$4 \mathrm{ZPTS}(1)=0$.

IFINCZ.LT.O) GO TO
ZINC=
ZMAX-ZMIN)/FLOAT(NCZ-1)
$C V=2 M I N-Z I N C$
DU $5 \quad 1=1$, NC
$C V=C V+Z I N C$
5 CLVLIII $=$ CV
GO TO 7
6 NC $2=-N C Z$
C ${ }^{\text {c***** }}$ calculate the no. of points above each contour level (zptsit).,
$7 \mathrm{DO} 42 \mathrm{i}=1, \mathrm{~N}$
$\begin{array}{lll}00 & 42 & J=1, N J \\ 00 & 41 \\ K=1, N C Z\end{array}$
IF(zII,J).LT.CLVL(K)) GO TO 42
41 LPTS $(K)=2 P T S(K)+1$.
42 continue
C****qCalculate the area above each contour level (zptsili).
DO $45 \quad 1=1, N C Z$
45 ZPTS(I) $=2 P T S(1)$
C $\mathrm{C}^{* \# \# \# \# \text { READ }}$ LABELS AND UNIT
READ(5,103) TITLE,ZUNITS, XUNITS
C*****WRITE CONTOUR SUMMARY TABLES. WRITE (6,110) TITLE, ZUNITS, XUNITS
DO bO $1=1$, NCZ DO $301=1$, NCZ
WRITEIS.111)CLVL(I), LPTSII), PERCNT
C*****PLOT RESPONSE SURFACE
CALL OPIIDN $10,1,0,0,2)$
CALL PWRT(50,36,TITLE,50,2,0)
CALL OPTION $10,0,0,0,01$
CALL RSPSURIZ,NI,NJ,DXT,DYT,ZMIN, ZMAX,NIY,NIX)

C*\#\#\#\#plot contour map
CALL OPTION(0,1,0,0,2)
CALL PHRT(130,100,TITLE,50,2,0)
CALL DPTION $(0,0,0,0,0)$
ENC ODE $\{28,115$, LABEL $)$ ZUNITS
ENC ODE 64,118 ,LABEL) XHINT, XXX, XUNITS
CALL PWRT 1130,59 ,LABEL, $64,0,0)$
ENCODE 164,119, LABEL YYY,YMAXT, XUNITS
CALL PHRT1130,42,LABEL,64,0,0)
ENLLOEETG6,116,LABELIDXT, XUNITS
ENC ODE 166,117 , LABELIDYT, XUNITS
CALL PWRT(130,10,LABEL,66,0,0)
CALL CALCT(Z,NI,NJ,NCZ, CLVL,OYT, DXT)

CALL PERIM(NSJ,MMM,NSI,NNN)
C****\#if both response and variance plotted, stop.
IF(NSTOP.EQ.1) RETURN
C
MAKE XZ AND YZ PLOTS
IFINPLOR-EO.O)
LBLX $=7 \mathrm{HX}$ VALUE
LBLY $=7$ THY VALUE
CALL GRDFMTITH(F10.3), 7HIF10.31)
DO $55 \mathrm{I}=1$,NPLOT
IF(PLOTII).LT.O) GD TO 52
$\begin{array}{ll}c & \text { YZ PLOTS } \\ c\end{array}$
JJ= (PLOT (I)-XMINT)/OXT + 1 .
CZLELMIN- (ZMAX-2MIN) SETI
CALL PERIML(NSI,1,NC 7, 1)
ENCODE $164,112, L A B E L$ TITLE, ZUNITS
ENCODE164,112,LABEL TITLE,ZUNITS
CALL PHRT $16,200, L A B E L, 64,1,1$)
CALL PHRT 16,200 , LABEL, $64,1,1$
ENCODE 142,113, LABEL) PLOTI
CALL PWRT $(500,60$, LBLY, $7,1,0)$
CALL PWRT $(100,12, L A B E L, 42,1,0)$
CALL FRSTPT (YMAXT,Z(1, JJ)
$51 \quad 11=2, N$
$X=Y$ MAXT $-F I * D Y T$
51 CALL $\operatorname{VECTOR}(x, 2111, J J))$
CALL FRAME
c
c
$\begin{aligned} & \text { X2 PLOTS } \\ & \text { PLOTII) }\end{aligned}=-$ PLOT(1)

II= (YMAXT -PLOT(I))/DYY + 1 .
ZZL=ZMIN - (ZMAX-ZMIN)/FLOAT(NCL-1)
CALL SETI.1, $95,-15,1,, X M I N T, X X X, Z 2 Z, 2 M A X, 1)$
CALL PERIML(NSJ,1,NCZ,1)
ENCODE
(64,112,LABEL) TITLE, ZUNITS
CALL PWRT $(6,200$, LASEL, 64, 1,1$)$
CALL PHRT16,200 ,LASEL, 64,1 ,
ENCODE $(42,114$, LABEL) PLOT(1)
CALL PWRT 100,12, LABEL,42,1,0)
CALL PWRT(500,60,LBLX,7,1;0)
CALL FRSTPT(XMINT,21II,1)
$\mathrm{N}=\mathrm{N} \mathrm{J}-1$
DO 53
$\log _{\mathrm{FJ}=\mathrm{J}} 53 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{X}=\mathrm{XMINT}+\mathrm{FJ}$ *DXT
53 CALL VECTOR(X,Z(11,J))
5 CALL FRAME
C*****If Vartance plots not requested, stop
IF(NVAR.EQ.1) RETURN
C C *****REPLACE Z, ZMIN, ZMAX, ZINC, AND NCZ WIth Variance parameters. NSTAP $=1$
$Z M A X=V A R(1,1)$
$0060 \mathrm{I}=1, \mathrm{NI}$
DO $60 \mathrm{~J}=1, \mathrm{NJ}$
IFVAR(I,J).LT.ZMIN) ZMIN=VAR(1,J)
60 Z(I), J)=VAR(I,J)
C
NCL=NCV
C*
do contour summary, response plot, and contour plot for variance. GO TO 2
FDRMATI2F
102 FORMAT (10FB.0.
103 FORMAT (7A10i
110 FORMAT (//*OCONTIUR SUMMARY OF *,5A10,1/4X,*CONTOUR LEVEL*,5X,*AREA COVERED*, $6 \mathrm{X}, *$ PERCENT OF*, $1,4 \mathrm{X}, *(*, A 10, *) *, 6 \mathrm{X}, *(\mathrm{SO}, *, A 8, *) * S \mathrm{X} *$ TOTA
2L AREA*) 4 , E11. $5,5 \mathrm{X}$, E13. $7,7 \mathrm{P}, \mathrm{FB} .3$)
111 FORMAT $(1 \mathrm{H}, 4 \mathrm{x}, \mathrm{E} 11.5,5 \mathrm{x}$,
112 FORMAT $5 \mathrm{~A} 10, * 1 \mathrm{~N} *, \mathrm{~A} 10)$
112 FORMAT (5A10, 113 FORMAT (*GRAPH OF RESPONSE SURFACE AT $x=*, F 10.3$)
113 FDRMAT (*GRAPH OF RESPDSE SURFACE AT $X=*, F 10.3$)
114 FORMAT (*GRAPH OF RESPONSE SURACE AT $Y=* * F 10.3$)
1114 FORMAT *GRAPH OF RESPONSE SURFACE

$10 \mathrm{NF})$
7 FORMA
117 FORMAT(26X,F10.5,2X,A10,*IN THE Y DIRECTION*) $\quad x=*, F 10.3,1 X, A 10$
119 FERMAT(19X:*AND $Y=*, F 10.3$, * TO $Y=*, F 10.3,1 \times, A 10)$

SUBROUTINE RSPSURIZ,I,J,XD,YD,ZMIN,ZMAX,N,M)
OIMENSION Z(91,91)
THIS SUBRDUTINE PLOTS A RESPONSE SURFACE in THREE DIMENSIONS USING THIS SUBRDUTINE PLDTS A RESPONSE SURFACE IN THREE DIMENSIONS USING
THE MICROFILM PLOTTER. LINES ARE PLOTTED ON EQUADISTANT $X-Z$, AND Y-Z PLANES TO MAKE UP THE SURFACE.
C*******ARGUMENT LIST********
$Z=$ AN I-GYY-J ARRAY CONTAINING THE Z-VALUES (RESPONSE) AT EACH EVENLY SPACED PLDTTING PDINT ON THE X-Y PLANE. IT IS
ASSUMED THAT Z(1, 1$)$ IS LOCATED AT COORDINATES (XMIN, YMAX)
$\mathrm{l}=$ THE NUMBER OF PLUTTING POINTS IN THE Y-DIRECTION.
$\mathrm{j}=$ THE NUMBER OF PLOTTING POINTS IN THE XDIRECTIDN
$J=$ THE NUMBER OF PLOTTING POINTS IN THE X-DIRECTIDN
XD $=$ THE DISTANCE BETHEEN PLOTTING POINTS IN THE X XIRECTION
YD
YD $=$ THE DISTANCE BETW
$\angle M I N=$ MINIMUM Z-VALUE.
ZMAX = MAXIMUM Z-VALUE.

- --ZMIN AND ZMAX SHOULD be convenient numbers which bound
n = the number of sample points between lines on the plotted
SURFACE IN THE Y DIRECTION.
$M=$ THE NUMBER OF SAMPLE PINTS BETWEEN LINES IN THE X-DIRECTION
scale the drahing
SCA
$\mathrm{A}=\mathrm{J}$
$\mathrm{B}=1$
$\left.\begin{array}{l}B=1 \\ Y C=.707 * Y D / X D\end{array}\right]$
$2 C=.5 * Y C * B /(Z M A X-2 M I N)$
YMIN $=2 C * 2$ MIN
YMAX $=Y C * B+2 C \# Z M A X$
YMAX $=Y C * B+$
X MAX $=A+Y C \# B$
$Y M X=1.5 * Y C * B$
IF (XMAX.GE.YMX) 60 TO 10
$X L=(Y M X-X M A X) /(2, * Y M X)$
$X R=1 .-(Y M X-X M A X) /(2)$
XR=1.- (YMX -XMAX) $1 /(2$. सYMX)
$\begin{aligned} & \text { GO TO } 20 \\ & Y L=(X M A X-Y M X) /(2 . * X M A X)\end{aligned}+.05$
$Y L=(X M A X-Y M X) \quad(2 . * X M A X)+.0$
$Y H=1 .-(X M A X-Y M X) \quad(2 * * X M A X)$
CALL SET $\mathrm{C} 05,1$.,YL,YH,O., XMAX,YMIN,YMAX, 1
20 CONTINUE
C DRAh the baselines
$x=Y C+10$
$y=Z M I N * Z C$
$Y=Z M I N * Z C+Y C$
CALL FRSTPT (X, Y)
$X=Y C+A$
CALL VECTOR (X, Y)
$Y=L M I N \neq \angle C+Y C * B$
c.

SUBROUTINE CALCNTIAM,MX,NY,NC,CLVL,DX,DY)
This subroutine makes a contour plot of data contained in array am
t labels the contours and prints an h or l at each local high or OW ON THE PLOT

IN THIS VERSION OF CALCNT, POINT (1,1) OF ARRAY AM IS IN THE UPPER LEFT HAND CORNER OF THE
HAND CORNER OF THE PLOT.
PARAME TERS ****

AMti,J $=$ ARRAY TO BE CONTDURED.
IFIRST SUBSCRIPT).
MY $=$ NO. OF POPSTS IN THE \times DIRECTION TO BE PLOTTED (SECDND SUBSCRIPTI.
NC $=$ NO. DF CONTOUR LEVELS TO BE PLOTTED. (MAX $=25$)
DX = SPACING IN THE Y DIRECTION OF SAMPLE POINTS IN AM.
DY = SPACING IN THE X DIRECTION DF SAMPLE POINTS IN AM.
COMMON/CONT/MT,NT,IX,IY, IDX,IDY,ISS,NP, CV,NNT,ASH, INX(B), INY(B), IPT(3.3), LEGEND(11), REC(500), NG, SBL,CSBL,LBLF, XC,YC
DATA SYBL/AH1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,1HA,1HE,1HC,1HO,1HE,
$11 \mathrm{HF}, 1 \mathrm{HG}, 1 \mathrm{HH}, 1 \mathrm{HI}, 1 \mathrm{HJ}, 1 \mathrm{HK}, 1 \mathrm{HL}, 1 \mathrm{HM}, 1 \mathrm{HN}, 1 \mathrm{HO}, 1 \mathrm{HP} /$
INITIALI
$81 \mathrm{NQ}=1$
81 $\begin{aligned} \mathrm{NO} & =1 \\ M T & =M\end{aligned}$
$M T=M X$
$N T=N Y$
$N N T=2$
$\mathrm{NNT}=2$
OASH $=1777 \mathrm{~B}$
IPT(1,1)=8
$\operatorname{TPT}(1,2)=1$
$\operatorname{IPT}(1,3)=2$
$\operatorname{IPT}(2,1)=7$
$\operatorname{PT}(2,1)=7$
$\operatorname{PT}(2,3)=3$
$\operatorname{IPT}(3,1)=6$
$\operatorname{IPT}(3,2)=5$
$\operatorname{IPr}\{3 ; 3)=4$
$\operatorname{In}(1)=-1$
1NX(2) $=-$
$1 \mathrm{~V} \times(3)=0$
$N \times(4)=1$
$N \times(5)=1$
$N \times(5)=1$
$N \times(6)=1$
1NX
$\operatorname{Na}(7)=0$
1NX(B) $=-1$
INY
$\operatorname{INY}(1)=0$
$\operatorname{lNY}(2)=1$

SCAN 470
$\operatorname{INY}(3)=+1$
NY (4) $=+1$
NY $(5)=0$
$\operatorname{iNY}(5)=0$
NY($16=-1$
INY(7) $=-1$
INY(B) $=-1$
$\mathrm{FM}=\mathrm{MT}$
$\mathrm{FN}=\mathrm{NT}$
FN=NT
$X=F M * D x$
$X_{4}=F=F N \neq D Y$
Y
c the scaling has been changed to reorient plotinext 10 statements IF $(X 4-Y 4) 21,21,22$
$Y 2=.985$
21 $x_{20}=\left(\times 4 / Y_{4}\right) * .85+\ldots$
GO TO 23
$22 \times 2=.98$
23 $\mathrm{Y}_{2}=\left(\mathrm{Y} 4 / \mathrm{X}_{4}\right) * .85+.125$
(13, $X C=(F M-1) /.((1 \times 2-.125) * 1024 ;$
$Y C=(F N-1.) /(Y 2-.13) * 1024$.
24 CONTINUE
ENCODE\{25,202,LEGEND
202 FORMAT(* CONTOURSCSYMBOL VALUES*)
DETERMINE CURRENT LEEEL TO BE CONTOURED
DO $150 \quad \mathrm{l}=1$, NC SBL $=$ SYBL(I)
$C V=C L V L(I)$
203
FDRMAT(1A1,,$==$,, E1) 5) SHL,C
MMM $=890$ - $1 * 16$, 11.5
CALL PHRT(4,MMM,LEGEND, 13,0,0)
Call scan(am,mt,nt)
150 continue
32 CALL HILO (AM,MT,NT RETURN
chis subroutine scans am for the starting points df contours.
 1PT(3,3),LEGEND(11), REC(500),NQ,SBL,CSBL,LBLF,XC,YC
DTMENSION AM(91,91)
$00 \quad 58 \quad \mathrm{~J}=1,500$
$5 B \operatorname{REC}(J)=0$
$1 \mathrm{SS}=0$
$\mathrm{MT}=\mathrm{MT}-1$
$00110 \quad \mathrm{I}=1, \mathrm{MT} 1$
IF (AMM(1,1)-CV) 55,110,110
55 IF (AM (1+1,1)-CV) $110,57.57$
$1 x=1+1$
$1 y=1$
$10=1$
$10 X=-1$
$10 Y=0$
$1 D Y=0$

110 COLL LINE
NT $=$ NT-1
DD $20 \quad I=1$, NT
If (AMMTMT, 1)-CV) 15,20,20
$15 \mathrm{IF}(A M(M T, \mathrm{I}+1)-\mathrm{CV}) \quad \begin{aligned} & 15,20,20 \\ & 17 \mathrm{IX}=\mathrm{MT} \\ & 20,17,1\end{aligned}$
$I X=M \tau$
$i=1+1$
$10 x=0$
$10 x$
IVX=-1
IOY $=-1$
$\angle B L F=-1$
CSBL $=-10+X C * 10$.
CALL LINEAR (AM, MT,NT)
20 CONTINUE
22 DO $30 \quad 1=1, M T 1$
DD $30 \quad 1=1, M T$
$M T 2=M T+1-1$
IF (AM(MT2,NT)-CV) 25,30,30
25 IF (AM(MT2-1,NT)-CV) 30,27,27
$27 \begin{aligned} & 1 X=M T 2-1 \\ & l y=N T\end{aligned}$
$\mathrm{I}=\mathrm{NT}$
$\mathrm{CDX}=1$
LDX $=1$
IDY $=0$
LBLE
LBLF=1
$\begin{aligned} & Q=N T \\ & C S B L\end{aligned}=Q+Y C * 6$

30 CONTINUE
DO $40 \quad 1=1, N T$
NT $2=N T+1-1$

$37 \begin{aligned} & \mathrm{I} x=1 \\ & \mathrm{y}=\mathrm{y}=\mathrm{NT} 2-1\end{aligned}$
$I Y=N T$
$10 X=0$
$10 \mathrm{X}=0$
IDY $=1$
SCANO920
SCANO930
SCANO940
SCANO950
CANO970
CBEL $=-(1 .-X C * 10)$.

ISS=1
N $1=\mathrm{NT}$-1
$\mathrm{NT} 1=\mathrm{NT}-1$
$M T 1=M T-1$
LBLF $=0$
DO $10 \quad \mathrm{~J}=2$, NT
$0010 \quad \mathrm{~J}=2, \mathrm{NT}$
01
$\mathrm{I}=1, \mathrm{MT}$
IF $(A M(1, J)-C V) \quad 5,10,10$
5 IF (AM(I+1,J)-CV) $10,7,7$
CDM $=100 *(I+1)+J$
12 DO $9 \mathrm{ID}=12, \mathrm{NP}$,
IF (RECIID)-COM , 9,10,9
${ }_{11} \begin{aligned} & \text { CONTINUE } \\ & 1 x=1+1\end{aligned}$
$1 x=1$
$1 y=1$
$1 Y=J$
ID $D=-1$
IDY=0
Call linfar (am, mt,nt)
O CONTINUE
RETUR
END

SCANO990
SCAN1010
SCAN1030
SCAN1040
SCAN1050
SCAN1060

SCAN1 090
SCAN1110
SCAN1120
SCAN1120
SCAN1130
SCAN1130
SCAN140
SCAN1150
SCAN1 170
CAN1180
SCAN1180

SCANOT90
SCANOB00
SCANOB10
SCANOB20
SCANOB20
SCANO830
SCANOB50
SCANOB70

SCANO890
SCANO900
SCANO910

SUBROUTINE LINEAR(AM,IDIM, JDIM)

ThIS SUBROUTINE PLOTS THE CONTOURS.
COMMON/CONT/MT,NT,IX,IY,IDX,IDY,ISS,NP,CV,NNT,ASH,INX(B),INY(8), 11PT(3,3), LEGEND(11), REC(500), NQ, SBL, CSBL,LBLF, XC,YC DIMENSION AM(91,91)
$N=1$
$1 \times 0=1$
$1 Y 0=1 Y$
$15 x=10 x$
$15 x=10 x+2$
$15 y=10 y+2$
$5=1015$
$15=1 P T(15 X, 15 Y)$
$150=15$
$15=1 \mathrm{~S}$
$150=150$
IF 1150
17 150=150-8
1 IF (IDX) $10,2,10$
$2 \begin{gathered}x=1 X \\ z=1 Y \\ I\end{gathered}$
$1 Y 2=1 Y+10$
$\mathrm{DY}=1 \mathrm{DY}$
y
y $0=11$
$y=1 y^{2}$
$10 \begin{array}{r}Y \\ Y \\ W \\ W\end{array}$
$\mathrm{DX}=1 \mathrm{DX}$
$1 \times 2=1 x+10 x$
$x=1(A M$
$X=\| A M(I X, I Y)-C V) /(A M(I X, I Y)$-AM $(I X 2, I Y) \| * D X+W$
54 IF (IS.EQ.1) 306,49
NP $=$ NP +1
IF(NP.GT.500) WRITE(6,7717)
7777 FORMAT(IH , *NEED MORE REC *)
$\operatorname{REC}(N P)=100 * 1 X+1 Y$
49
9 if $=15+1$
7
IF
7 if
7
IS $=15-8$
$810 x=1 N x(15)$
$10 Y=1 N Y(15)$
$1 X 2=1 X+10 X$
$1 Y 2=1 Y+10$
$1 Y 2=1 Y+10 Y$
IFIN 67,73
67 IF(LBLF) $120,122,121$
120 CALL PWRTIY,CSBL,SBL $1,0,0)$
121 CALL PWRTICSBL,-X,SRL, $1,0,0)$
GO TO 123
2 IF(N.NE.L) GO TO 122
$\mathrm{K} 1=0$.
$\mathrm{DLDX}=\mathrm{x}$
DLD
$N=2$

60 TO 51
$24 R=\operatorname{SQRT}((1 X-O L D X) / X C) * * 2+((Y-\cap L O Y) / Y C) * * 2)$
$R 1=R 1+R$
$R 1 R 1$

$R 1=R-(R 1-8$.
$X N=(\mid X-D L D X) \neq R 1) / R+B L D X$
$Y N=((Y-O L D Y) \neq R 1) / R+O L O Y$
$\mathrm{N}=($ (Y-OLDY)*R1)/R + OL
$\mathrm{F}(\mathrm{N} . E Q .2)$ GO TO 126
REORIENTED PLOT CALL $\operatorname{FRSTPT}\left(Y N_{1}-X N\right)$
CALL VECTOR $(Y,-x)$ $\mathrm{N}=0 \mathrm{C}$ VETOR $(\mathrm{Y},-\mathrm{x})$
$\mathrm{G}=\mathrm{TO}$
$\mathrm{Rl}=0$
51
c
REORIENTED PLOT CALL PWRTIYN, -XN,SBL, 1,0,01 $\mathrm{N}=3$
$\mathrm{OLDx}=\mathrm{xN}$ $\operatorname{LO} Y=Y \mathrm{~N}$
25 OLDX=x
OLDY=Y
60 to 51
6- REDPIENTED PLOT
$\mathrm{CALL}_{\mathrm{N}=0}^{\mathrm{CARSTPT}(\mathrm{y},-\mathrm{x})}$ GO TO 51
REORIENTED PIOT
73 CALL VECTOR $(Y,-x)$
51 IF(ISS)20,58
20 IF (1X-1 $12,21,12$
21 IF (IY-IYO) $12,22,1$
22 IF(1s-150) $12,23,12$
23 IF (IS.EQ. 1) 307.14
NP $=$ NP+1
IF (NP.GT.500)
WRITE
(6,7777 REC(NP) $=100 * 1 X+1 Y$
14 IF (1DX) $52,53,52$
$x=1 X$
$z=1 \mathrm{Y}$
$Y 2=1 Y+1 D Y$
$\stackrel{\mathrm{DY}=1 \mathrm{DY}}{=}=1$ (AMS
c CALL VECTOR(y,-x)
74 CALLURN
$52 \begin{aligned} & Y=1 Y \\ & W=1 X\end{aligned}$
$W=1 \mathrm{X}$
$\mathrm{DX}=1 \mathrm{DX}$
$1 \times 2=1 x+10 x$
$x=1(A M)$

- REORIENTED PLOT

TRACOS50
TRACOS60
TRACOS
TRAC0570
tracobego
tracogoo

CALCOL 70
CALCCO180
CALCO190

ALCO230
CALCO240
CALCO250

CALL VECTOR $(\mathrm{Y},-\mathrm{x})$
RETURN
58 IF (1x2) $13,75,13$
13 IF (1Y2) $11,77,119$
19 IF (IY2-NT; $12,12,78$
12 IF ICV-AM(IX2,1Y211 16, 16, 165
IF (ISTE.EQ.15) 49,1
16 is =is+5
$1 \mathrm{x}=1 \times 2$
$1 \mathrm{Y}=1 \mathrm{Y} 2$
$1 Y=1 Y 2$
$60 \quad 109$
REORIENTED PLOT (NEXT 13 STATEMENTS)
75 CSBL=-11*-XC*10.1 CALL PWRT(Y,CSBL,SBL, $1,0,0)$
RETURN RETURN
CSBL $=-10+x[* 10.1$ CALL PHRT(Y,CSBL,SBL, $1,0,0$) RETURN
77 CSBL $=1 .-Y C * 6$. (CSBL,-X,SBL, 1,0,0)
$78 \quad 0=N T$
CSBL $=0+\mathrm{YC}$ © 6 .
ALL PWRTICSBL, $-x, 5 B L, 1,0,0$ RLTURN
END

```
    subroutINE HILO{AM,M,N
SUbroutine prints an
such line prints an hat each local high point and an \(L\) at
COMMON/CONT/MT,NT,IX,IY,IDX,1DY,ISS,NP, CV.NNT,ASH,INX(B),INY(B) IPT(3,3), LEGENO (11), REC(500), NQ,SBL, CSBL, LBLF, XC,YC DIMENSION AMI91,91), JSIGN(2)
TRAC 0830
TRACOB40
TRAC0850
RACOB50
100 FDRMAT (E10.3)
NMT \(=\) NNT +1
\(N N=N T-N N\)
\(M M=M T-N N T\)
DO \(10 \mathrm{~J}=\mathrm{NMT}\), NN
Oo \(10 \mathrm{I}=\) NMT, MM
II \(=\mathrm{I}-\mathrm{NNT}\)
IF
IAMII
11 IF (AM(1,J)-AMIII, J) \() 12,10,13\)
DO \(40 \mathrm{~K}=1\), NN
\(00 \quad 40 \quad K K=1,7\)
\(1 \times 2=1+K * 1 N \times(K K)\)
IF(AM(I,J)-AM(1X2, 1 Y21) \(40,10,10\)
0 continue
GO TO 30
\(\mathrm{KS}=2\)
\(\begin{array}{ll}13 & K S=2 \\ 00 & 50 \\ \mathrm{D}=1 \text {, } \mathrm{NNT}\end{array}\)
DO \(50 \mathrm{~K}=1\), NN
DO \(50 \mathrm{KK}=1,7\)
1 \(\times 2=1+K * 1 N X \mid K K\) \(1 Y 2=J+K * 1 N Y(K K\)
IF (AM(
IF(AM(1,J)-AM(1) 2, IY2 \(1110,10,50\)
50 CONTINUE
\(30 \mathrm{XPLT}=1\)
YPLT \(=\)
C REORIENTED PLDT
CALL PSYMIYPLT,-XPLT, JSIGN(KS), 0,0,1)
RETURN
RETD
PRDGRAM ECOGRIDIINPUT, PUNCH,TAPE5=INPUT,TAPEG=PUNCHI
C. THIS PROGRAM PUNCHES THE GRID FOR PROGRAM ECOMAP
C*****INPUT VARIABLES
YL, YH \(=\) MINIMUM AND MAXIMUM Y-COORDINATES FOR THE
YL, YH \(=\) MINIMUM AND MAXIMUM
XL, XH
MINIMUM AND MAXIMUM
X-CODRDINATES FOR THE GRID
XINC \(=\) INCRIMENT BETHEEN GRIO POINTS IN THE X DIRECTIDN
```



```
HM \(X=(X H-X L+X I N C) / X I N C\)
UMY \(=(Y H-Y L+Y I N C) / Y I N C\)
\(x=x L-X I N C\)
Do \(10 \quad I=1\), NUMX
\(x=X+X 1 N C\)
\(Y=Y H+Y I N C\)
DO \(10 \quad J=1\), NUMY
\(Y=Y-Y\) INC
IF
(X.EO.
Y=Y-Y.NC.
IF (X.EQ.XL.OR.X.EQ.XHIGO TO 9
IF(Y.EO.YL.OR.Y.ER.YHIGO TO 9
\(x 1=x-x\) INC
\(\times 2=x+X I N C\)
\begin{tabular}{rl}
\(Y_{1}=Y-Y I N C\) \\
\(Y\) & \(=Y+Y I N C\) \\
\hline
\end{tabular}
WRITE \((6,2001 X, Y, X 1, X 2, Y 1, Y 2\)
G0 TO 10 ( 0 ) \(x\), \(\gamma\)
WRITE16,200) \(x, y\)
9 GRITEIG,
10 CONTINUE
100 FORMAT(6F10.0)
200 FORMAT(GFB.2)
END
```


Example

BUUTELOUA CHONUROSIODES COVER $(5 \times 5,1969)$
THE SYSTEM MATRICES WITH OESIGN CENTER AT（ $400.00,1200.00$ ）ARE，

SYSTEM TRANSPOSE								
－10000E＋01	． $10000 \mathrm{E}+01$	． 100000^{+01}	． $10000 \mathrm{E}+01$	． $10000 \mathrm{E}+01$	． $10000 \mathrm{E}+01$	． $10000 \mathrm{E}+0 \mathrm{I}$	－10000E＋01	． $10000 \mathrm{E}+01$
－． $10000 \mathrm{E}+01$	－．10000E＋01	－． $10000 \mathrm{E}+01$	0.	0.	0.	． $10000 \mathrm{E}+0$ İ	$.10000 E+01$	－10000E＋01
． $10000 \mathrm{E}+01$	0.	－ $.10000 \mathrm{E}+01$	．10000E＋01	0 ．	－． $10000 \mathrm{E}+01$	$.10000 \mathrm{E}+01$	0.	－． $10000 \mathrm{E}+01$
－． $10000 \mathrm{E}+01$	0.	－10000E＋01	0 ．	0.	0.	$.10000 \mathrm{E}+0$ I	0 ．	－． $10000 \mathrm{E}+01$
． $10000 E+01$	． $10000 \mathrm{E}+01$	－10000E＋01	－． $20000 \mathrm{E}+01$	$-.20000 \mathrm{E}+01$	－． $20000 \mathrm{E}+01$	$.10000 \mathrm{E}+01$	． $10000 \mathrm{E}+01$	． $10000 \mathrm{E}+01$
－10000E＋01	－．20000E＊01	－10000E＋01	． $10000 \mathrm{E}+01$	－． $20000 \mathrm{E}+01$	． $10000 \mathrm{E} \rightarrow 01$	$.10000 E+01$	－． $20000 \mathrm{E}+01$	． $10000 \mathrm{E}+01$
$.10000 E+0$ i	0.	－． $10000 \mathrm{E}+01$	－． $20000 \mathrm{E}+01$	0 。	． $20000 \mathrm{E}+01$	$.10000 \mathrm{E}+0 \overline{1}$	0.	－． $10000 \mathrm{E}+01$
－． $10000 \mathrm{E}+01$	． 2000 OE +01	－． $10000 \mathrm{E}+01$	0.	0.	0.	$.10000 E+01$	－． $20000 \mathrm{E}+01$	－10000E＋01
$X \neq X$ INVERSE								
－11111E＋00	0.	0 。	0 。	0.	0.	0.	0.	
0.	． $16667 E+00$	0.	0 。	0.	0.	0.	0.	
0.	0 ．	－16667E゙＋00	0 。	0.	0 。	0.	0	
0 ．	0.	0 。	－ $25000 \mathrm{t}+00$	0.	0.	0.	0.	
0.	0.	0 。	0 。	． $55556 \mathrm{E}-01$	0.	0.	0 。	
0 。	0.	0 －	0 ．	0 。	－55556E－01	0.	0.	
0.	0.	n ．	0.	0 ．	U．	．83333E－01		
0.	0.	0.	0 。	0.	0.	0 。	．83333E－01	

```
REGRESSION AAOUT THE POINT & 400.00,1200.00)
RESIDUE OF PLANE = .17n682222EE+03
RESIDUE OF FIT = .382336111E+02
REGRESSION = .132448611E+03
REGRESSION/RESIDUE OF PLANE = .775995352E*00
    SIGMA SQUARED OF Z.XY= . 382336111E+02 SIGMA SQUARFD OF Z = . 213352778E+02 2 514444E+01
```



```
REGKESSION AAOUT THE POTNT ( 400.00, 800.00
RESโDUE OF PLANE = .189762222E+03
RESIDUE OF PLANE = *ं1897624CEE*
RESIDUE OF FIT = .621469444E+02
REGRESSION = .127615278E+03
SIGMA SQUARED OF Z.XY = .621469444E+02 SIGMA SQUAREO OF Z = . 237202778E+02 % FAR = .715556E+01
ZHAT = .71556E+01 + -. 27167E+01 X + -. 11833E+01 Y + -. 22150E+01 XY * . 66111E+00 (3X##2-2) *
    79444E+00 (3Y*#2-2) * . 40833E+00 (3YX*&2-2) + -.16by3E+01 (3XY&#2-2) +
```

