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EXECUTIVE SUMMARY 

This report presents the findings from CDOT Study 80.30 entitled “Evaluation of Seismic 

Testing for Quality Assurance of Lime-Stabilized Soil.”  The objectives of this study were to 

determine the technical feasibility of using seismic techniques to measure the laboratory and 

field seismic modulus of lime-stabilized soils (LSS), and to compare/correlate test results from 

bench-top (free-free resonance) seismic testing on LSS cylinders to in-situ (surface seismic) 

testing performed on field-constructed LSS. In addition, this research sought to develop a pilot 

specification for quality assurance of LSS using seismic test methods.  

Lime stabilization of roadway subgrade soils is widely used to reduce soil plasticity, 

mitigate heave, and increase subgrade stiffness and strength. LSS performance requires careful 

construction, and the relatively involved construction process requires diligent quality control 

(QC) and quality assurance (QA). The need to assess design related parameters such as elastic 

modulus and 28-day unconfined compressive strength of LSS during QC/QA conflicts with more 

rapid pavement construction schedules. Strength and modulus growth in LSS stem from 

pozzolanic reactions that are a function of both time and temperature. These reactions continue 

over months, but construction schedules often desire evaluation of acceptance after days. For this 

reason, an important part of this project was to explore and develop a maturity index for LSS 

(i.e., a function that accurately predicts LSS modulus growth as a function of both curing 

temperature and curing time).  

A thorough literature review investigated the technical feasibility of using free-free 

resonance and surface wave testing to determine the seismic modulus of LSS. In addition, a 

review of commercially available seismic test equipment is presented to inform future seismic 

LSS testing.  

A combined laboratory (cylinder) and field (cylinder and surface wave) testing program 

was conducted at three LSS construction sites in the Denver metropolitan area. For the cylinder 

approach, field-mixed LSS was gathered on the day of final remix/compaction and reconstituted 

into 8 in height by 4 in diameter cylinders. These cylinders were cured at varying temperature 

regimes including normal (23oC/73oF), accelerated (41oC/105oF), and decelerated (8oC/46oF). 

Cylinders were also cured at the LSS field site to mimic the temperature regime experienced by 

the field-constructed LSS. For the surface wave approach, seismic surface wave testing was 
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performed at several locations on the field-constructed LSS to determine seismic modulus. To 

assist in the development of a maturity index for LSS, ambient (air) and soil temperatures were 

monitored in the laboratory and field using temperature probes. The experimental results (from 

both cylinder and surface wave testing) suggest that LSS experiences modulus growth over 28+ 

days but cannot be characterized as a function of curing day alone. Instead, a maturity index for 

LSS modulus growth must also consider curing temperature. Based on the experimental results, 

the authors have developed a LSS maturity index that characterizes modulus growth as a 

function of both curing time and curing temperature, and proposed a pilot specification for QA of 

LSS via seismic testing and maturity index-based acceptance criteria.  

 

The following conclusions are drawn from the results of this study, and subsequent 

recommendations are made for CDOT practice: 

1. Temperature has a significant impact on LSS modulus growth with curing time.  The 

growth of modulus was found to vary as a non-linear function of both temperature and curing 

time. This function was inferred from the fitting of constant and variable curing temperature 

free-free resonance data, and is a seismic modulus maturity index for LSS. 

2. The LSS maturity index is a function of soil temperature, not ambient (air) temperature. 

Both LSS and air temperature were monitored during field construction, and a correlation 

between the two is obtained. This correlation can simplify the implementation of the LSS 

maturity index pilot specification as only air temperature needs to be obtained.  

3. Differences in modulus growth between free-free resonance (cylinders) and surface wave 

(field-constructed LSS) data can be attributed to construction-related issues, and are not the 

result of testing equipment/practice. To this end, the study supports the recommendations of 

the CDOT specification for LSS (Section 307) in that grading should be performed 

immediately after construction. Grading conducted on later days (i.e., days 4-8) resulted in 

significant seismic modulus loss on field-constructed LSS.  

4. The study supports the use of both cylinder and surface wave seismic testing for the QA of 

LSS. As the goal of LSS QA should be to evaluate the actual field-constructed LSS, either 

method is valid so long as appropriate LSS field construction procedure is followed.  

5. The study recommends the use the seismic LSS maturity index developed herein. Results 

suggest that significant differences in LSS seismic modulus behavior occur due to curing 
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temperature variation. For this reason, acceptance via seismic QA on field-constructed LSS 

must consider curing temperature.  

6. A pilot specification for QA of LSS via seismic testing is developed in Chapter 5. This 

specification allows for the use of either cylinder or surface wave testing to determine the 

seismic modulus of field-constructed LSS. Experimental results are statistically adjusted 

based on % confidence criteria, and acceptance/rejection is verified via the field curing 

temperature and the LSS maturity index.  

7. In the event that simultaneous acceptance via unconfined compressive strength (UCS) 

testing is desired, a correlation between seismic modulus and UCS is recommended.  

Attempts to core field-constructed LSS for UCS testing were not successful, and this 

approach is not recommended.  

Implementation 

The study supports the use of both cylinder and surface wave seismic testing for the QA 

of LSS. In addition, the study recommends the use the seismic LSS maturity index developed 

herein. Results suggest that significant differences in LSS seismic modulus behavior occur due to 

curing temperature variation. For this reason, acceptance via seismic QA on field-constructed 

LSS must consider curing temperature. A pilot specification for QA of LSS via seismic testing is 

presented herein. This specification allows for the use of either free-free resonance or surface 

wave testing to determine the seismic modulus of field-constructed LSS. Experimental results 

are statistically adjusted based on % confidence criteria, and acceptance/rejection is verified via 

the field curing temperature and the LSS maturity index. In the event that simultaneous 

acceptance via unconfined compressive strength (UCS) testing is desired, a correlation between 

seismic modulus and UCS is recommended. Attempts to core field-constructed LSS for UCS 

testing were not successful, and this approach is not recommended. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview and Objectives 

In the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure, 

the critical design parameter required for subgrade, subbase, base and stabilized layers is the 

elastic (resilient) modulus. In CDOT design practice, the resilient modulus (MR) of the material 

is estimated via correlation to unconfined compressive strength (UCS). During quality assurance 

(QA) process, the MR is also estimated from correlation to UCS.  For stabilized soils, the 

correlation to MR is based upon UCS of samples that have undergone accelerated curing 

(41oC/105 oF) for 5 to 7 days. There are a number of limitations to this QA approach:  

 This lab-based assessment is not a true evaluation of the field-constructed product. While 

the soil does come from the construction site, specimens are prepared in the lab using 

standard Proctor energy (and not actual field compaction energy). This creates a structure 

that is different from the field-compacted soil. It has been demonstrated that field 

compaction and lab compaction can be significantly different.  

 The estimation of field-constructed MR comes from a correlation to UCS that may not be 

representative for all soils. The test does not directly measure MR.   

 The MR - UCS correlation equation is based on 28-day normally cured samples; however, 

the MR is determined via correlation by using UCS results from accelerated cure (e.g., 5 

days at 41oC/105 oF) samples to expedite construction. This introduces additional 

uncertainty because 5-day accelerated curing is only an approximation of 28-day normal 

temperature curing. As documented in Report No. CDOT-2010-1, there is no unique 

41oC/105 oF curing duration that mimics 28-day normal curing for all soils. Therefore, 5-

day 41oC/105 oF curing will overestimate or underestimate strength and stiffness, 

depending on soil type. 

Ideally, a QA approach should directly measure the design parameter (i.e., modulus) of 

the field-constructed material. The technique should allow for testing after 3, 4 or 5 days to 

expedite construction. The seismic technique enables the direct measurement of modulus in the 

lab and in the field. Seismic waves propagate through the soil at a speed that is proportional to 

Young’s modulus and shear modulus. The design modulus may be determined in the laboratory 
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for the given stabilized soil using a free-free resonant (FFR) test and can be verified directly in 

the field with a surface seismic method. 

 This report presents the results of seismic testing conducted on three construction sites in 

the Denver metropolitan area. These results, in addition to measured temperature data, are used 

to develop a seismic modulus maturity index for LSS. Using this LSS maturity index, a pilot 

specification for QA of LSS with seismic testing is developed.  

1.2 Summary of Report 

Chapter 1 explains the objectives of the study and how they were achieved. Chapter 2 

presents a detailed review of literature on seismic testing and its applicability to LSS QA. Field 

test site summaries and laboratory/field data is presented in Chapter 3. This data is used to 

develop a seismic modulus maturity index and form conclusions in Chapter 4. In Chapter 5, a 

pilot specification for seismic QA of LSS is developed.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Laboratory Characterization of Seismic Modulus via Free-Free Resonance 

Free-free resonant column (FFR) testing has been utilized to estimate low strain (i.e., 

1x10-6), or seismic modulus of reconstituted soil cylinders by several researchers (Nazarian et al. 

2002, Ryden et al. 2006).  FFR testing was performed on lime and cement stabilized soils by 

Ǻhnberg and Holmen (2008) and Ryden et al. (2006). FFR testing is attractive for QA/QC of LSS 

because it is non-destructive (i.e., modulus growth from one specimen can be measured over time 

because cylinders are not destroyed during testing). This technique requires the preparation and 

testing of reconstituted soil cylinders.  

Toohey and Mooney (2012) performed FFR testing on LSS cylinders of three different lime-

soils mix designs. Their results indicate that LSS seismic modulus growth for a given day can be 

predicted using a power-law statistical model relationship, the day 1 seismic modulus, and the 

current curing day.  Furthermore, the authors showed that seismic Young’s modulus was well 

correlated to unconfined compressive strength measurements (i.e., R2 = 0.89). These results 

demonstrate the value of FFR as a predictive tool for LSS QA, but results from this research were 

based on lab-cured (i.e., constant temperature) cylinders only. Because LSS maturity is time and 

temperature dependent, the implementation of a power-law function to predict LSS seismic modulus 

growth at variable temperatures (i.e., field conditions) may be over simplified. Ideally, LSS seismic 

modulus growth would be predicted a maturity index function that incorporates both time and 

temperature dependence (e.g., the concrete maturity index).  

2.2 Field Characterization of Seismic Modulus via Surface Wave Analysis 

Because laboratory (benchtop) and field (surface wave) seismic modulus are directly 

related (Nazarian et al., 2002, Ryden et al., 2006), it logically follows that QA of field-

constructed LSS should be performed on the field-constructed surface. Several approaches to 

material characterization via surface wave analysis have been developed and widely utilized for 

soil and pavement evaluation. Surface wave testing estimates material modulus by performing 

either time domain analysis or frequency domain (spectral) analysis on measured surface wave 

data. While material wave velocity can be determined with time domain analysis, most studies in 

literature utilize spectral analysis because it also allows for the estimation of layer thickness. 

This section discusses literature that has utilized surface wave analysis for soil testing 
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CHAPTER 3: TEST PROGRAM  

3.1 Test Site Summary 

There were no CDOT LSS projects constructed within the Denver metropolitan area 

during this study period. Therefore, experimental efforts including seismic testing of LSS were 

conducted at three housing development sites, namely Truth Christian Academy (Lakewood), 

Solterra (Lakewood), and Candelas (Arvada) (Figure 3.1). Soil properties, site construction 

details, and lime/cement mix designs are summarized in Table 3.1. Both free-free resonance 

testing of reconstituted LSS cylinders and surface wave testing of field-constructed LSS were 

performed at all three sites. Individual site maps with test locations are shown for Truth Christian 

Academy (TCA), Candelas, and Solterra in Figures 3.2, 3.3, and 3.4, respectively. Lime 

stabilization at all three sites was conducted by ARS, Inc.  Each site was treated (application + 

mixing) with hydrated quicklime (in accordance with mix design specifications) and allowed to 

mellow for 2-4 days (Figure 3.5a). On the day of compaction, TCA and Candelas soils were 

treated with dry cement powder (Figure 3.5b), remixed at optimum moisture content (Figure 

3.5c), and compacted (Figure 3.5d). Solterra soil was not cement treated; compaction was 

performed after final remixing and moisture conditioning of lime-treated, mellowed soil. A 

summary of the laboratory and field testing program is presented in Table 3.2.  
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properties of the material (Ryden, 2004). Determination of P and S wave velocities as a function 

of a material’s elastic properties is shown in Equations 3.2 and 3.3. The full derivation of this 

theory is presented in Ryden (2004). In layered media, guided waveforms can be generated by 

the interaction of P and S waves at the material layer interface (i.e., the interface between LSS 

and the unstabilized material below). One special type of guided wave is the Rayleigh wave 

generated from reflections and mode conversions of body waves (i.e., P and S waves) at the free 

surface (Rayleigh, 1885).  Estimation of Rayleigh wave speed as a function of material 

properties is shown in Equation 3.4.  

 

௣ܸ ൌ ට
ாሺଵିజሻ

ఘሺଵାజሻሺଵିଶజሻ
                                                           (3.2) 

௦ܸ ൌ ට
ா

ଶఘሺଵାజሻ
                                                                  (3.3) 

ோܸ ൌ
௏ೞ

ሺଵ.ଵଷି଴.ଵ଺జሻ
                                                              (3.4) 

where: 

௣ܸ is the material’s p-wave velocity (m/s) 

௦ܸ is the material’s s-wave velocity (m/s) 

ோܸ is the material’s Rayleigh wave velocity (m/s) 

E  is the material’s Young’s modulus (MPa) 

 is the material’s mass density (kg/m3) ߩ

߭ is the material’s Poisson’s ratio (unitless) 
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velocity has been appropriately identified, the seismic Young’s modulus of the material can be 

estimated using Equation 3.1 and the material’s mass density.  

In general, time domain analysis is sufficient for characterization of LSS. It is a faster and 

simpler procedure than spectral analysis. However, spectral analysis can also estimate the 

thickness of the top layer of material (e.g., field-constructed LSS). The underlying theory and 

data processing for spectral analysis are significantly more complicated than the time domain 

approach, and are therefore not discussed in detail here. Full detail on the theoretical background 

and data processing are discussed in Ryden (2004). However, some commercially available 

software automatically performs spectral analysis from raw data and may therefore be a more 

desirable approach if LSS layer thickness is also desired. Several commercially available surface 

wave setups are discussed in Section 2.3.  

Basic time domain analysis of surface wave data involves the identification of Rayleigh 

(and possibly P) waves and picking their subsequent arrival times. Figure 3.10 illustrates the 

most basic experimental setup and corresponding time histories. As seen in Figure 3.10b and c, 

arriving P waves have significantly smaller amplitude than Rayleigh waves from the same time 

history. If P waves can be readily identified in the time histories, Vp can be estimated directly 

using Equation 3.5.   

௣ܸ ൌ
௫మି௫భ
௧ುమି௧ುభ

                                                          (3.5) 

 

ோܸ ൌ
௫మି௫భ
௧ೃమି௧ೃభ

                                                         (3.6) 

 

௉ܸ ൌ ሾ2ሺ1 ൅ ሻሿߥ ⋅ ሾ ோܸሺ1.13 െ 0.16߭ሻሿ                                    (3.7) 

where: 

 ோଵ is the first arrival time of the Rayleigh wave in record 1 (s)ݐ

 ோଶ is the first arrival time of the Rayleigh wave in record 2 (s)ݐ

 ௉ଵ is the first arrival time of the P-wave in record 1 (s)ݐ

 ௉ଶ is the first arrival time of the P-wave in record 2 (s)ݐ

 ଵ is the source to receiver distance for record 1 (m)ݔ

 ଶ is the source to receiver distance for record 2 (m)ݔ
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software and would not be done manually). A detailed description of the underlying assumptions 

and mathematics is presented in Ryden (2004). Ideally, this software would import raw time 

history data traces and convert them into a dispersion curve. Both time domain and spectral 

analysis was performed (via SeisNDT) on surface wave data, and interpretation of spectral 

results is discussed in Appendix C. 

3.3.2 Experimental Setup and Interpretation of Surface Wave Data 

This research utilized a more complex surface wave testing program in the interest of 

obtaining more robust data sets for spectral analysis. The setup used for field testing is shown in 

Figure 3.11. Test arrays were either 1 m (at TCA) or 3 m (all other sites) in length. Wave 

behavior as a function of source to receiver distance is more readily visible in 3m array results, 

and therefore, discussion of spectral analysis will use 3m test array data. An example test 

protocol for a 3m test array is shown in Figure 3.12a. Note that for the multiple source one 

receiver (MSOR) approach, one accelerometer receives signal from 30 separate impacts (i.e., 

multiple sources). These individual records are superimposed (Figure 3.12b) to simulate 

multichannel analysis of surface waves (i.e., a system with 1 source and 30 receivers). Example 

data from a 3m array test is shown in Figure 3.12b and (amplified for wave identification) c. 

Again, note that in the un-amplified record, P waves are somewhat difficult to identify. For this 

reason, it is often necessary to amplify raw time histories to identify P waves (if they are present 

at all).   
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on Proctor specimens generated modulus results inconsistent with 2:1 specimens based on the 

FFR modulus equation (3.1). Additional research and finite element modeling would be 

necessary to validate the expected resonant frequency behavior of specimens with a height to 

diameter ratio less than 2:1. Toohey, Mooney, and Bearce (2013) suggest that the UCS values 

obtained from testing on standard Proctor specimens exhibit an approximately 1:1 correlation to 

UCS values obtained from testing on 4 in x 8 in cylindrical specimens. Furthermore, Toohey and 

Mooney (2012) suggest a correlation between E0 and UCS qu (both obtained from 4 in x 8 in 

specimens) shown in Equation 3.9. If a correlation to qu is desired, Equation 3.9 should be used.  

 

ሻܽܲܯ0ሺܧ ൌ 1735 ∗ ሻܽܲܯሺݑݍ െ 225ሺܽܲܯሻ                                                       (3.9) 
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(Surface Wavee vs. FFR) for TTCA 2011 – Zonne 2. 
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T0 = temperature below which cement hydration is assumed to cease (oC) 

t = curing time, elapsed from initial compaction (days) 

 

FFR data from each cylinder set was averaged and is presented vs. curing time in Figures 

4.17a, 4.18a, and 4.19a for TCA, Candelas, and Solterra, respectively. Equation 4.1 is applied to 

this data and the resulting maturity relationships are shown in Figures 4.17b, 4.18b, and 4.19b, 

for TCA, Candelas, and Solterra, respectively. After applying Equation 4.1 to the FFR data, it is 

clear that a linear maturity index does not adequately capture LSS modulus growth, i.e., if a 

linear maturity index was applicable to LSS, the E0 curves in Figures 4.17b, 4.18b, and 4.19b 

would plot on top of one and other.  



 

Figgure 4.17: Seismmic Young’s moodulus vs. (a) cu
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The general form of this expression is shown in Equation 4.2, 

଴ሺܧ തܶ௧ሻ ൌ ݁ఉ	௧ߟ
ത்೟                                                                 (4.2) 

where:  

തܶ௧= cumulative average temperature from days 1-t  (oC) 

 a constant empirical parameter (0.05 + 0.002) (unitless) = ߚ

   .௧ = a varying empirical parameter related to t (see Figure 4.21, Equation 4.3) (unitless)ߟ

 

Per analysis of the data, ߟ௧ changes as a function of t (Figure 4.21). Fitting the array of ߟ௧values 

suggests that ߟ௧ follows a power model (Equation 4.3),   

ሻݐሺ	௧ߟ ൌ ߙ ∗  ఊ                                                                    (4.3)ݐ

where ݐ = curing day, ߙ	241 = and 0.349 = ߛ. Essentially, ߟ௧ is a power model function that 

describes the development of E0 as a function of t only. This is an expected result and was 

demonstrated in Toohey and Mooney (2012), (i.e., E0 development in cylinders cured under 

constant temperature followed a power model as a function of t). The empirical parameter ߚ in 

Equation 4.2 was found to remain constant (0.002 + 0.05 = ߚ) as shown in Figure 4.22.   

 

 

 



 

Figure 4.20: CCorrelation betw
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because FFR cylinders prepared for this section did not undergo meaningful modulus growth. 

The reason for lack of performance with FFR cylinders is unknown.  

For Candelas field data, the LSS maturity index slightly underpredicts both FFR and 

surface wave surface wave data (Figure 4.31), but the difference is comparatively small (i.e., 

compared to TCA 2011 surface wave results). For the Solterra field data, the LSS maturity index 

shows good agreement to experimental data for both FFR and surface wave results (Figure 4.32).  

In general, the LSS maturity index shows relatively good agreement to FFR data for all sites 

However, the LSS maturity index sometimes disagrees with surface wave data. This lack of 

agreement does not imply limitations to either the testing procedure or the LSS maturity index. 

Rather, this results from lack of field-constructed LSS performance. From a QA standpoint, 

sections in which surface wave modulus is significantly lower than LSS maturity index-predicted 

modulus would likely be rejected.  
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2. The LSS maturity index is a function of soil temperature, not ambient (air) 

temperature. Both LSS and air temperature were monitored during field construction, and 

a correlation between the two is obtained. This correlation can simplify the 

implementation of the LSS maturity index pilot specification as only air temperature 

needs to be obtained.  

3. Differences in modulus growth between free-free resonance (cylinders) and surface 

wave (field-constructed LSS) data can be attributed to construction-related issues, and are 

not the result of testing equipment/practice. To this end, the study supports the 

recommendations of the CDOT specification for LSS (Section 307) in that grading 

should be performed immediately after construction. Grading conducted on later days 

(i.e., days 4-8) resulted in significant seismic modulus loss on field-constructed LSS.  

4. The study supports the use of cylinder and surface wave seismic testing for the QA of 

LSS. As the goal of LSS QA should be to evaluate the actual field-constructed LSS, 

either method is valid as long as appropriate LSS field construction procedure is 

followed.  

5. The study recommends the use of the seismic LSS maturity index developed herein. 

Results suggest that significant differences in LSS seismic modulus behavior occur due to 

curing temperature variation. For this reason, acceptance via seismic QA on field-

constructed LSS must consider curing temperature.  

6. A draft specification for QA of LSS via seismic testing is developed in Chapter 5. This 

specification allows for the use of either cylinder or surface wave testing to determine the 

seismic modulus of field-constructed LSS. Experimental results are statistically adjusted 

based on % confidence criteria, and acceptance/rejection is verified via the field curing 

temperature and the LSS maturity index.  

7. In the event that simultaneous acceptance via unconfined compressive strength (UCS) 

testing is desired, a correlation between seismic modulus and UCS is recommended.  

Attempts to core field-constructed LSS for UCS testing were not successful, and this 

approach is not recommended.  
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CHAPTER 5: PILOT SPECIFICATION 

A pilot specification was developed for the use of nondestructive seismic testing for 

quality assurance (QA) of lime-stabilized soil (LSS). This pilot specification details the 

procedure for QA of LSS via seismic testing and maturity index – based acceptance criteria. 

Seismic modulus of LSS is assessed using one of two experimental methods: Method A (seismic 

testing of reconstituted cylinders) or Method B (surface wave testing of field-constructed LSS). 

A target modulus value is obtained from a time/temperature dependent LSS maturity index 

(Section III, and finally, experimental data are statistically adjusted (based on desired % 

confidence) and compared to the target modulus value for acceptance/rejection (Section IV). 

Note that some figures/equations from earlier chapters of the report are repeated here in the 

interest of making this a standalone pilot specification.  

 

I: Experimental Testing- Method A 

Description: Method A specifies the experimental procedure for field LSS assessment via 

seismic testing of reconstituted, field-mixed cylinders.  

 

Required Materials:  hand shovel, full size shovel, soil storage container, airtight plastic bags, 4 

in (diameter) x 8 in (height) cylindrical soil compaction mold, hammer and tamper, free-free 

resonance experimental setup.  

 

Procedure I - Specimen Preparation: On the day of final field remix/compaction of an LSS 

field section, gather machine-mixed LSS for specimen preparation. LSS should ideally be 

gathered immediately after final remix but must be obtained prior to field compaction. At each 

soil gather location, obtain enough loose LSS to prepare five cylinders. Cylinders are 

reconstituted with a 4 in diameter by 8 in height soil compaction mold, using four hand-tamped 2 

in layers of predefined soil mass (Figure 5.1).  
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Procedure II - Free-Free Resonance Testing: Free-free resonance (FFR) testing should be 

performed on each cylinder after 3, 5, or 7 days of curing. There is no ASTM standard for free-

free resonance testing, but the methodology used herein mimics that found in literature (e.g., 

Ryden et al., 2006, Ahnberg and Holmen, 2008, Toohey and Mooney, 2010). Cylinders should 

be removed from the earthen trench, taken out of the plastic sealing bags, and placed (one at a 

time) on a foam sheet. Each cylinder is then subjected to longitudinal excitement via a tap 

(Figure 5.3) to estimate seismic Young’s modulus. Each cylinder should be subjected to five 

impacts (taps). A miniature accelerometer is used to record the resultant free vibration of the 

cylinder. After data processing, the resonant frequency and the cylinder’s mass density are used 

to determine seismic Young’s modulus using Equations 5.1. 

 

଴ܧ ൌ ሺ2ߩ ௥݂௣ܮሻଶ ൌ ሺߩ ௣ܸሻଶ                                                          (5.1) 

where: 

 ଴ = seismic Young’s modulus (MPa)ܧ

 mass density (kg/m3) = ߩ

௥݂௣ = longitudinal resonant frequency (Hz) 

 cylinder length (m) = ܮ

௣ܸ = material p-wave velocity (m/s) 

 

For each set of five cylinders, determine the mean (ߤ) and standard deviation (ߪ) of ܧ଴ for 

acceptance verification in Section V of the specification. Each cylinder should be placed back in 

the bag and in the trench for future testing, if desired. 
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௉ܸ ൌ ሾ2ሺ1 ൅ ሻሿߥ ⋅ ሾ ோܸሺ1.13 െ 0.16߭ሻሿ                                                          (5.5) 

where: 

 ோଵ is the first arrival time of the Rayleigh wave in record 1 (s)ݐ

 ோଶ is the first arrival time of the Rayleigh wave in record 2 (s)ݐ

 ௉ଵ is the first arrival time of the P-wave in record 1 (s)ݐ

 ௉ଶ is the first arrival time of the P-wave in record 2 (s)ݐ

 ଵ is the source to receiver distance for record 1 (m)ݔ

 ଶ is the source to receiver distance for record 2 (m)ݔ

 

If P waves are not visible, VP is determined using VR (from Equation 5.4) and the material’s 

Poisson’s ratio (v) using Equation 5.5. Poisson’s ratio for LSS generally ranges from 0.2-0.4, so 

if the actual value is not known, use v = 0.3. 

 



 O

density a

this value

Proctor d

section, s

determin

verificati

Figure 5.5: (a
identificat

Once VP has b

and Equation

e of density 

density shoul

standard Pro

ne the mean (

ion in Sectio

a) Source and r
tion for exampl

been obtaine

n 5.1. If field

should be us

ld be used (i

octor density 

and stand (ߤ)

on V. 

receiver configu
le record 1, and

ed (from Equ

d density test

sed. If field d

i.e., assumin

for optimum

dard deviatio

64 
 

uration for simp
d (c) waveform i

uation 5.3 or

ts have been

density tests

g a mix desi

m mix design

on (ߪ) of E0

ple surface wav
identification fo

r 5.5), determ

n performed (

s have not be

ign study wa

n should be 

(for each LS

ve testing, (b) wa
or example reco

mine E0 usin

(e.g., nuclea

een performe

as conducted

available). F

SS section) f

aveform  
ord 2.  

ng the soil’s 

ar density gau

ed, standard 

d for the LSS

Finally, 

for acceptan

 

mass 

uge), 

S 

nce 



65 
 

III: Determination of Target Seismic Modulus from LSS Maturity Index 

Because LSS maturity is a time and temperature dependent reaction, the LSS temperature 

must be monitored in the field (or inferred from ambient temperature). If the average daily soil 

temperature ( തܶ௧	஽௔௬) was directly recorded via a temperature probe, determine the average curing 

temperature ( തܶ௧) using Equation 5.6. If soil temperature was not directly recorded, first determine 

തܶ௧	஽௔௬ with ambient (air) temperature and Equation 5.7.  

 

തܶ௧ሺݐ, തܶ௧	஽௔௬ሻ ൌ
∑ ത்೟	ವೌ೤ሺ௜ሻ
೟
೔సభ

௧
                                                                         (5.6) 

 

തܶ௧	஽௔௬	ሺ ஺ܶ௠௕ሻ ൌ 0.8 ∙ ஺ܶ௠௕ ൅ 2.8                                                                 (5.7)                         

where: 

஺ܶ௠௕ = the average ambient (air) temperature over 1 day of curing (oC) 

തܶ௧	஽௔௬ = the average soil (LSS) temperature over 1 day of curing (oC) 

തܶ௧ = the cumulative average soil temperature over t days of curing (oC) 

 

 

The LSS maturity index –based target modulus (ETar) is determined using Equation 5.8, തܶ௧  

(Equation 5.7), and the curing day on which experimental testing was performed (t). 

 

,ݐ௔௥ሺ்ܧ തܶ௧ሻ ൌ ሺݐߙఊሻ ∗ ሺ݁ఉ ത்೟ሻ                                                       (5.8) 

where: 

ETar = target E0 based on maturity index (MPa) 

 curing day (days) = ݐ

തܶ௧ = average temperature for day 1 through the day being estimated (oC) 

 241 =	ߙ

 0.349 = ߛ

 0.05 = ߚ
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Table 5.2:  ࣆ and ࣌ for each data set presented in Table 5.1. 

Section 

E0 (MPa) 

Day 3  Day 5  Day 7 

 ߤ ߪ ߤ ߪ ߤ  ߪ
1  1629  226  1873  192  2188  179 
2  1598  187  1963  151  2145  219 
3  1627  166  2046  173  2084  148 

 

Step 2: Determine ࢀഥ࢚ for each section 

For simplicity sake, assume all three sections (Figure 5.8) were mixed on the same day (i.e., തܶ௧	is 

the same for all sections). The average daily air temperature (TAmb) is used to estimate average 

daily soil temperature ( തܶ௧	஽௔௬) using the correlation shown in Equation 5.7. തܶ௧	஽௔௬ is then used to 

determine the cumulative average temperature ( തܶ௧) for each day (Equation 5.6, shown in Table 

3). As an example, the calculation of തܶ௧  for day 3 is shown below. 

 

തܶଵ	஽௔௬ ൌ 0.8	ሺ34 ௢	ܥ ሻ ൅ 2.8 ௢	ܥ ൌ 30 ௢	ܥ  

തܶଶ	஽௔௬ ൌ 0.8ሺ33 ௢	ܥ ሻ ൅ 2.8 ௢	ܥ ൌ 29 ௢	ܥ  

തܶଷ	஽௔௬ ൌ 0.8ሺ35 ௢	ܥ ሻ ൅ 2.8 ௢	ܥ ൌ 30 ௢	ܥ  

 

തܶଷ ൌ
തܶଵ	஽௔௬ ൅ തܶଶ	஽௔௬ ൅ തܶଷ	஽௔௬

3
ൌ
30 ௢	ܥ ൅ 29 ௢	ܥ ൅ 30 ௢	ܥ

3
ൌ 30 ௢	ܥ  

 

Table 5.3: Average daily ambient temperature, average daily soil temperature,  
and cumulative average temperature for synthetic data example.  

 
Day  TAmb (

oC) ࢚ഥࢀ ) ࢟ࢇࡰ
oC) ) ࢚ഥࢀ

oC)

1  34  30  30 

2  33  29  30 

3  35  31  30 

4  31  28  29 

5  32  28  29 

6  31  27  29 

7  30  27  29 
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Step 3: Determine ETar for each section 

Using Equation 5.8, determine the target modulus (ETar) using തܶ௧ and t (the curing day that E0 

data was acquired). Calculation of ETar for days 3, 5, and 7 (with corresponding തܶ௧	values) is 

shown below. Note that the empirical parameters ߛ ,ߙ, and ߚ are equal to 241, 0.349, and 0.05, 

respectively. These parameters were determined by correlating seismic modulus values (obtained 

via FFR) to curing day and curing temperature.  This procedure is described in detail in CDOT 

Report 2013, Evaluation of Seismic Testing for Quality Assurance of Lime-Stabilized Soil. 

 

௔௥ሺ3,30ሻ்ܧ ൌ ሺߙሺ3ሻఊሻ ∗ ൫݁ఉሺଷ଴ሻ൯ ൌ  ܽܲܯ	1584

௔௥ሺ5,29ሻ்ܧ ൌ ሺߙሺ5ሻఊሻ ∗ ൫݁ఉሺଶଽሻ൯ ൌ  ܽܲܯ	1801

௔௥ሺ7,29ሻ்ܧ ൌ ሺߙሺ7ሻఊሻ ∗ ൫݁ఉሺଶଽሻ൯ ൌ  ܽܲܯ	1926

 

Step 4: Assess acceptance for each section 

Because 84% confidence is desired, EAcc should be calculated using Equation 5.10.  The 

comparison of EAcc to ETar for each test day and section is summarized in Table 5.4. Results 

indicate that Section 1 does not meet acceptance on days 3 or 5 but is acceptable on day 7. EAcc 

for Section 2 is below the ETar on days 3, 5, and 7, and should therefore be rejected. Section 3 

meets acceptance on day 5, and while the synthetic day 7 data is presented, day 7 testing would 

not be required based on day 5 acceptance.  Additional testing could be performed on rejected 

sections (e.g., Section 2) on later days, but post 7-day acceptance testing is not generally feasible 

for construction schedules. 

 

Table 5.4: Evaluation of acceptance criteria for synthetic LSS data set. 

Section 
ࢉࢉ࡭ࡱ ૡ૝% (MPa) 

Acceptance Day 
3 

Day 
5 

Day 
7 

1  1400  1680  2010  Accept on Day 7 
2  1410  1790  1900  Reject 
3  1460  1870  1940  Accept on Day 5 

 ࢘ࢇࢀࡱ 1580  1800  1930 
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APPENDIX A – TABULAR SEISMIC MODULUS DATA (FFR) 
 

TABLE A1: SEISMIC MODULUS VALUES OBTAINED VIA FFR FOR SOLTERRA (DAYS 1-10).  

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

0  1  2 3 4 5 6 7 8  9  10

1  23  460  483  616 792 959 1049 1162 1261 1364  1480 1550

2  23  456  562  585 750 889 976 1114 1206 1294  1364 1462

3  23  450  555  558 744 882 983 1105 1209 1293  1370 1477

4  23  488  615  638 853 976 1113 1242 1348 1440  1517 1619

5  23  436  544  572 729 878 989 1105 1200 1312  1359 1459

6  8  337  420  522 590 624 633 664 662 687  690  693

7  8  339  427  526 545 556 587 600 635 639  647  671

8  8  323  393  488 517 536 555 580 585 617  644  650

9  8  324  410  497 534 575 588 622 635 661  700  694

10  8  325  412  512 539 556 581 594 632 655  671  655

11  Field  364  461  536 611 629 680 699 719 738  777  807

12  Field  355  446  519 592 615 653 676 700 723  739  764

13  Field  362  425  499 574 617 635 659 683 708  727  756

14  Field  359  433  493 553 589 630 643 655 668  696  722

15  Field  360  455  512 569 594 629 647 665 683  720  745

16  41  368  831  1309 1840 2118 2381 2685 2907 3010  3106 3171

17  41  347  887  1575 2223 2785 3178 3506 3794 3997  4079 4220

18  41  340  949  1520 2101 2538 2947 3299 3607 3920  4068 4180

19  41  328  887  1612 2228 2785 3244 3583 3829 4057  4146 4266

20  41  359  870  1717 2409 2894 3263 3534 3781 3999  4066 4124
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TABLE A2: SEISMIC MODULUS VALUES OBTAINED VIA FFR FOR SOLTERRA (DAYS 11-28). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

11  12  13 14 16 18 20 22 24  26 28

1  23  1619  1721  1817 1897 1980 2134 2196 2281  2395  2484 2620

2  23  1508  1555  1640 1781 1863 2013 2117 2203  2289  2383 2510

3  23  1528  1578  1674 1803 1899 2008 2121 2201  2282  2392 2518

4  23  1684  1749  1823 1921 2088 2186 2305 2395  2465  2599 2708

5  23  1521  1611  1648 1768 1879 1996 2134 2208  2282  2358 2475

6  8  710  727  808 834 851 882 917 943 950  975 1011

7  8  691  711  723 764 778 810 833 864 895  912 929

8  8  660  670  719 729 774 810 813 835 857  880 904

9  8  703  712  712 766 766 838 866 872 879  917 954

10  8  687  720  717 767 797 824 834 854 875  897 919

11  Field  836  866  881 895 924 952 981 1012  1033  1055 1075

12  Field  790  815  828 841 892 944 996 1017  1045  1064 1081

13  Field  786  815  830 845 876 906 936 950 973  994 1013

14  Field  747  773  786 799 834 869 904 925 943  962 983

15  Field  771  796  808 821 854 888 921 942 965  982 1001

16  41  3206  3255  3301 3379 3474 3555

17  41  4338  4414  4433 4357 4426 4438

18  41  4283  4418  4399 4425 4425 4425

19  41  4304  4341  4341 4364 4403 4485

20  41  4219  4315  4384 4414 4491 4491            

 
 

TABLE A3: SEISMIC MODULUS VALUES OBTAINED VIA FFR FOR TCA 2011-ZONE 1 (DAYS 1-10). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

0  1  2 3 4 5 6 7 8  9  10

1  23  456  820  957 1046 1240 1358 1448 1579 1612  1646 1669

2  23  501  880  1078 1153 1295 1356 1403 1528 1567  1607 1645

3  23  475  911  1092 1164 1281 1385 1431 1545 1577  1610 1656

4  23  495  853  1047 1122 1155 1240 1420 1506 1524  1542 1558

5  23  504  884  1036 1106 1226 1279 1330 1358 1453  1551 1562

6  Field  513  1056  1168 1236 1484 1603 1671 1745 1843  1943 1950

7  Field  493  1104  1263 1345 1529 1662 1760 1805 1869  1934 2025

8  Field  525  1124  1279 1333 1504 1522 1628 1822 1871  1921 2005

9  Field  501  1108  1244 1304 1474 1559 1778 1808 1869  1932 1962
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TABLE A4: SEISMIC MODULUS VALUES OBTAINED VIA FFR FOR TCA 2011-ZONE 1 (DAYS 11-28). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

11  12  13 14 16 18 20 22 24  26 28

1  23  1714  1836  1871 1965 1974 2043 2123 2145  2219  2221 2197

2  23  1676  1766  1823 1894 1969 2014 2122 2169  2145  2234 2232

3  23  1692  1827  1863 1942 1964 1979 1988 2181  2200  2176 2176

4  23  1586  1698  1783 1812 1920 1936 1975 2066  2063  2087 2151

5  23  1585  1668  1815 1805 1896 1924 1987 2037  2052  2070 2135

6  Field  2044  2028  2167 2139 2265 2354 2494 2515  2524  2578 2632

7  Field  2213  2223  2176 2363 2386 2445 2510 2570  2567  2577 2589

8  Field  2231  2231  2183 2200 2333 2432 2519 2529  2504  2538 2577

9  Field  2111  2233  2272 2320 2460 2480 2525 2497  2493  2528 2546

 
 

TABLE A5: SEISMIC MODULUS VALUES OBTAINED VIA FFR TCA 2011-ZONE 2 (DAYS 1-10). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

0  1  2 3 4 5 6 7 8  9  10

1  Field  474  804  967 1046 1220 1377 1566 1783 1872  1963 2037

2  Field  483  763  846 998 1162 1392 1601 1718 1739  1760 1963

3  Field  499  784  903 1023 1264 1371 1539 1657 1777  1901 1924

4  Field  501  876  997 1046 1253 1445 1600 1786 1854  1923 2004

5  Field  510  1127  1243 1312 1489 1634 1697 1754 1812  1872 2020

 
 

TABLE A6: SEISMIC MODULUS VALUES OBTAINED VIA FFR TCA 2011-ZONE 2 (DAYS 11-28). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

11  12  13 14 16 18 20 22 24  26 28

1  Field  2175  2190  2265 2280 2386 2405 2515 2594  2635  2674 2718

2  Field  2129  1979  2194 2268 2364 2373 2470 2494  2518  2631 2672

3  Field  1970  2033  2233 2170 2331 2350 2517 2554  2643  2717 2763

4  Field  2090  2177  2369 2259 2441 2451 2641 2480  2542  2673 2745

5  Field  2008  2104  2146 2276 2374 2433 2463 2516  2515  2526 2570
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TABLE A7: SEISMIC MODULUS VALUES OBTAINED VIA FFR CANDELAS – ZONE 1 (DAYS 1-10). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

0  1  2 3 4 5 6 7 8  9  10

1  23  434  737  1122 1291 1440 1622 1734 1847 1928  2039 2139

2  23  512  617  912 1062 1168 1304 1398 1451 1573  1660 1763

3  23  457  641  976 1118 1283 1377 1474 1562 1629  1758 1882

4  23  435  572  840 1003 1118 1244 1337 1451 1533  1622 1716

5  23  504  711  1089 1188 1390 1509 1592 1687 1787  1914 2019

6  Field  375  734  1323 1385 1492 1666 1785 1925 2052  2164 2231

7  Field  433  1150  1632 1819 2061 2270 2276 2487 2697  2826 3317

8  Field  573  1003  1450 1707 1903 2099 2189 2313 2371  2539 2689

9  Field  398  1278  1742 2016 2230 2455 2575 2663 2774  2884 3059

10  Field  465  1377  1757 2184 2365 2632 2749 2832 2944  3027 3178

 
 

TABLE A8: SEISMIC MODULUS VALUES OBTAINED VIA FFR CANDELAS-ZONE 1 (DAYS 11-28). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

11  12  13 14 16 18 20 22 24  26 28

1  23  2249  2373  2418 2479 2539 2647 2769 2831  2894  2945 3029

2  23  1815  1857  1976 2077 2139 2184 2353 2448  2482  2531 2589

3  23  1938  1983  2045 2139 2218 2270 2412 2497  2593  2628 2683

4  23  1788  1870  1934 1978 2006 2061 2230 2317  2378  2415 2455

5  23  2156  2207  2285 2383 2437 2548 2640 2735  2811  2894 2930

6  Field  2286  2390  2468 2514 2552 2637 2727 2836  2935 
7  Field  3336  3350  3359 3364 3388 3579 3671 3657  3646 
8  Field  2842  2918  3007 3154 3282 3365 3452 3478  3495 
9  Field  3156  3253  3329 3442 3511 3643 3776 3857  3949 
10  Field  3315  3474  3572 3614 3726 3771 3771 3774  3782      
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TABLE A9: SEISMIC MODULUS VALUES OBTAINED VIA FFR CANDELAS – ZONE 2 (DAYS 1-10). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

0  1  2 3 4 5 6 7 8  9  10

1  8  305  411  469 529 590 631 684 729 773  805  850

2  8  254  317  371 398 477 511 551 590 626  662  702

3  8  344  403  453 504 560 602 647 693 736  779  827

4  8  304  418  423 451 509 558 612 661 715  761  820

5  8  278  337  351 371 426 463 505 546 598  623  934

6  23  293  351  445 521 584 642 705 769 834  897  942

7  23  368  552  711 818 976 1046 1122 1196 1277  1351 1433

8  23  383  626  805 942 1110 1184 1262 1331 1423  1493 1576

9  23  372  590  769 883 1023 1092 1159 1229 1303  1371 1447

10  23  350  812  1077 1235 1398 1478 1563 1645 1734  1808 1903

11  Field  269  923  1350 1685 1894 2015 2167 2264 2357  2423 2534

12  Field  341  956  1304 1692 1926 2045 2201 2288 2398  2421 2578

13  Field  359  1122  1553 1701 2023 2145 2316 2402 2554  2679 2754

14  Field  278  1094  1666 1898 2145 2246 2363 2458 2547  2634 2744

15  Field  343  1098  1742 1978 2191 2315 2436 2556 2651  2745 2835

16  41  353  2023  2779 3199 3212 3278 3339 3339 3339  3339 3339

17  41  401  1914  2689 3090 3177 3295 3394 3394 3394  3394 3394

18  41  403  2066  2930 3188 3114 3120 3185 3185 3185  3185 3185

19  41  387  1861  2461 2635 2658 2661 2689 2689 2689  2689 2689

20  41  413  2150  2902 3039 3035 3031 3029 3029 3029  3029 3029
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TABLE A10: SEISMIC MODULUS VALUES OBTAINED VIA FFR CANDELAS – ZONE 2 (DAYS 11-28). 

Specimen 
Curing   
Temp   
(oC) 

Seismic Young's Modulus (MPa) for each day 

11  12  13 14 16 18 20 22 24  26 28

1  8  901  913  1002 1053 1175 1216 1257 1248  1295  1344 1278

2  8  749  761  837 879 1003 1032 1062 1030  1075  1018 1050

3  8  876  890  980 1034 1134 1159 1184 1150  1215  1278 1248

4  8  884  906  1003 1053 1113 1148 1184 1218  1248  1278 1278

5  8  982  996  1090 854 854 912 972 946 987  1030 1042

6  23  985  989  1076 1122 1278 1288 1468 1553  1627  1701 1730

7  23  1517  1540  1698 1788 1835 1895 2016 2061  2146  2230 2270

8  23  1665  1683  1842 1935 1973 2096 2184 2270  2339  2406 2448

9  23  1536  1552  1699 1772 1814 1903 1978 2099  2184  2270 2270

10  23  1996  2008  2194 2270 2312 2408 2497 2589  2661  2735 2735

11  Field  2657  2746  2820 2912 2957 3047 3096 3135  3178 
12  Field  2681  2768  2826 2946 2995 3068 3113 3166  3199 
13  Field  2812  2893  2966 3029 3098 3158 3234 3289  3339 
14  Field  2821  2959  3067 3185 3130 3187 3208 3209  3212 
15  Field  2956  3035  3165 3234 3222 3214 3202 3283  3264 
16  41  3339  3339  3339 3339 3331 3337 3339

17  41  3394  3394  3394 3394 3382 3390 3394

18  41  3185  3185  3185 3171 3199 3189 3185

19  41  2689  2689  2689 2689 2692 2695 2689

20  41  3029  3029  3029 3015 3042 3040 3029          
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APPENDIX B – TABULAR SEISMIC  
MODULUS DATA (SURFACE WAVE) 

 
TABLE B.1: SEISMIC MODULUS VALUES OBTAINED VIA  

SURFACE WAVE TESTING FOR TCA 2011 – ZONE 1. 

Test 
Location 

Seismic Young's Modulus (MPa) for each day 

2  3  4 5 6 7 8 9 10 

1  153  327 361 418 760 432

2  352  322 353 402 485 521 618 655  662 
3  203  260 328 753 612 268 301 312  213 
4  302  494 315 655 699 312 343

5  212  322 445 500 536 580 599 635  662 
6  361  561 689 746 823 877 900 920 
7  167  462 515 536 675 764 651 331  322 
8  304  276 494 527 554 612 658 276  301 
9  171  287 361 457 521 586 612 595  601 
10  325  494 536 573 622 658 696 570  578 
11  165  554 592 682 583 699 738 539  459 
12  140  358 371 457 497 317 386 421  485 

 
 

TABLE B.2: SEISMIC MODULUS VALUES OBTAINED VIA  
SURFACE WAVE TESTING FOR TCA 2011 – ZONE 2. 

Test 
Location

Seismic Young's 
Modulus (MPa) for each 

day

2 3 4 5

7 604 657 736 748

8 510 601 669 741

11 512 625 741 878

15 638 690 747 818

19 616 744 796 861

20 655 703 741 809
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TABLE B.3: SEISMIC MODULUS VALUES OBTAINED VIA  
SURFACE WAVE TESTING FOR TCA 2012. 

Test 
Location 

Seismic Young's Modulus (MPa) for each day 

2  3 4 5 6 7 8 9 

1  549  645 645 687 675 675 691 694 
2  806  853 855 875 903 944 1089 1091 
3  730  799 827 877 928 967 1003 1110 
4  804  1043 1134 1207 1232 1239 1261 1332 
5  682  737 756 779 840 933 933 853 
6  555  687 725 766 861 941 941 853 
7  687  759 786 817

8  551  581 634 661

9  195  271 344 361 368 374 387 366 
10  126  412 431 455 460 470 480 570 
11  336  358 365 392 392 395 398 442 
12  234  287 344 401 415 430 461 461 

 
 

TABLE B.4: SEISMIC MODULUS VALUES OBTAINED VIA  
SURFACE WAVE TESTING FOR SOLTERRA. 

Test 
Location 

Seismic Young's Modulus (MPa) for 
each day 

2 3 4 5 6 7

1  381 422 510 590 730 692

2  423 529 554 542 603 656

3  409 533 411 658 605 804

4  389 497 571 531 601 860

5  308 351 507 590 618 753

 
 

TABLE B.5: SEISMIC MODULUS VALUES OBTAINED VIA  
SURFACE WAVE TESTING FOR CANDELAS. 

Test 
Location

Seismic Young's Modulus 
(MPa) for each day 

2 3 4 5

6  547 890 1110 1302

7  1251 1624 1794 1913

8  882 1186 1517 1805

9  605 1080 1348 1704
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APPENDIX E – TEMPERATURE INTERPRETATION 

This appendix explains the theory used to estimate average temperature for LSS maturity 

index implementation. E1 demonstrates the difference between interpretations of temperature 

and resulting EPred from the LSS MI. Consider Figure E1a, where തܶ௧	஽௔௬  is the average 

temperature over each specific 24 hour window. Using each തܶ௧	஽௔௬ value as input for the LSS 

maturity index, the resulting EPred (Figure E1) suggests unrealistic behavior for LSS (i.e., 

significant decrease in modulus from days 15-22) and is therefore not a good choice for  

temperature interpretation. Using  തܶ௧	஺௟௟  (i.e., the average temperature over days 1-28), the 

resulting E0 Pred has a reasonable shape, but implies that testing must be conducted for 28 days to 

determine the proper temperature average. In the interest of implementing a pilot specification in 

which QA could be verified at early curing windows (i.e., 3-7 days after compaction), obtaining 

a 28-day average temperature is unrealistic. The best choice for temperature interpretation is  

	ഥܶ௧	ௌ௨௠ (i.e., the cumulative average of the temperature from day 1-t), defined in Equation E1. 

This approach helps to account for early variations in temperature but also incorporates the 

temperature history.  

	ഥܶ௧	ௌ௨௠ሺݐሻ ൌ
ሺ∑ ത்೟	ವೌ೤ሺ௧ሻሻ

೟
೔సభ

௧
                                                                 (E1) 
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