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ABSTRACT 

A kinematic cascade is defined as a sequence of n discrete overland flow 

planes or channel segments in which the kinematic wave equations are used to 

describe the unsteady flow . Each plane or channel is char acterized by a length, 

lk , width, wk , and a r oughness - slope factor , Outflow from the ~ 

plane, along with the parameters for planes k and k + 1 , establishes the 

upstream boundary condition for plane k + 1 Nondimensional equations are 

presented for the ~ element in a kinematic cascade . Properties of the 

solutions for a kinematic cascade with pulsed lateral inputs are examined . 

Cascade solutions are compared with characteristi c - analytic solutions and with 

experimenta l data for flow over a l inearly converging section . 

vii 



THE KINEMATIC CASCADE AS A HYDROLOGIC MODEL* 

by 

David F. Kibler** and David A. Woolhiser*** 

Chapter I 

INTRODUCTION 

Scope and Objectives of the Study 

The basic premise underlying the " r eductionis t" 
approach to hydrologic modeling is that the complex 
geometry and topography of natural catchments can be 
replaced by large numbers of simple e l ements such as 
over land flow planes and channe ls. In its most 
elementary form, the surface runof f pr ocess i s thus 
reduced to the hydraulic problem of unsteady, 
spatially-varied flow over a uniform plane or channel . 
The simple plane or channel t hus represents a single 
element in a distributed hydrologic model of the 
catchment . 

In general, a distributed watershed model should 
possess the following characteristics : 

1. The model should be based on sound physical 
reasoning. 

2. The parameters should have direct physical 
significance . 

3. The model should be numerically accurate; 
i . e . , the approximation introduced by finite d i ffer­
ence schemes s hould not influence parame t er estimati on 
in any significant way. 

4 . The mode l should be subject t o experimental 
verification . 

5 . The structure of the model should not be so 
complicated as to require extremely difficult program­
ming logic . 

The kinematic cascade is a distributed hydrologic model 
that exhibits many of these desirable properties and 
has, therefore, been selected for further analysis in 
t his investigation. The broad objective of this study 
is to examine cert ain mathemati cal proper ties of the 
selected model and to describe its application to the 
problem of watershed transformation and simulation. 

The kinematic cascade is defined in this study 
as a sequence of n discrete overland flow planes 
or channel segmen ts i n which the kinematic wave equa­
tions are used to describe the unsteady flow . An 
n-plane cascade r ece iving lateral inflow and discharge­
ing into a channel segment i s shown in Figure 1. 
Discharge leaving the downstream boundary en t e·r s at 
the upstream boundary of the next plane and establishes 
the upstream boundary condition for flow on that plane. 
Discharge leaving the downstream boundary of t he last 
plane is then fed laterally into a channel of known 
dimensions where it is conveyed via a cascade of 
channels to some downstream gauging point. 

Previous investigators using the kinema tic wave 
technique for simulating watershed response either 
have relied on severe geometr ical simplification or 
have not examined the approximation err ors of their 
finite differ ence schemes . Errors caused either by 
geometric oversimplification or by the f inite­
difference scheme can affect optimi zed model para ­
meters in a manner which casts doubt on their physical 
significance. 

Thus, the specific purpose of this study is t o 
evnluate errors introduced by various computational 
a l gorithms and by trans formation of watershed slope . 
The dimens i on less equations describing kinema tic flow 
over a cascade of planes will fir st be deve l oped . 
Solutions to these equations, obtained by t he method 
of characteristi cs, will then serve as standards in 
s ubsequent comparisons with solutions obtained by 
three r ectangular grid methods . The effects of 
kinemati c shock waves, which are produced by exact 
integration of the characteristic equations for 
certain cascade confi gurations, will then be analyzed . 
A method for tracing the propagation path and a 
discussion of hydrograph distortions caused by shock 
propagation are presented. Finally, the effects of 
transforming the slope of an overland flow surface 
will be examined by means of outflow hydrograph com­
parisons . This discuss i on i s prefaced by a brief 

* Contribution f rom the Colorado Agricultural Experiment Station and the Northern Plains Branch, Soil and 
Wa t e r Conservation Research Division , Agricultural Research Service, USDA, Fort Collins, Colorado. 

** Associate Engineer, Water Resources Engineers, I ncorporated, Walnut Creek, California. Formerly Graduate 
Student, Colorado State University, Fort Collins. 

***Research Hydraulic Engineer, USDA, Fort Collins, Colorado. 



Figure 1. Cascade of n th 
planes discharging into t he j-- channel section. 

review of work leading to the formulation of t he 
kinematic cascade as a hydrologic model . 

Background of the Kinematic Cascade 

The concept of the kinematic cascade was first 
int r oduced by Brakensi ek (1967a) who transformed an 
upland watershed into a cascade of planes discharging 
into a singl e channel . His transformstion technique 
was based on preservation of t he hypsometric curve 
and the contour l ength·elevation curve for the water· 
shed . Srakensiek has also written on basic applica· 
tion of the kinematic flood-routing method and has 
described the properties of the kinematic technique 
within the context of hydraulic and hydro l ogic flood­
routing procedures ( 1966, 1967b) . 

The theory of kinematic flow, which forms the 
mathematical basis for this hydrologic model , was 
first set forth by Lighthill and Whitham (1955) in a 
paper dealing with flood movement in rivers. The 
authors used the term "kinematic" to describe those 
waves whose properti es are given by the equation of 
cont inuity and a stage-discharge rela tion, s uch as· 
t he Ch~zy or Manning friction formula . This is in 
contrast to dynamic or long gravity waves whose 
motion is governed by both the continuity and momentum 
or s hallow-water equations . Accordingly, kinemati c 
waves possess only one velocity and one system of 
c haracteristics along which flow is to be computed. 
The r esulting first-orde r differential equations for 
the kinematic wave are in marked contrast to the 
hyperbolic system associated with the shallow-water 
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equations. The latter possess two fami lies of charac ­
teristics and can be solved only by resor t to finite­
difference methods . 

I n a pa per on t he ce l erity of subsiding flood 
waves, Henderson (1963) described t he conditions under 
which flow in a prismatic channel (without lateral 
inflow) could be classified as kinematic . The criter­
ion developed for kinematic flow was t hat the partial 
derivative terms appearing in t he equation of motion 
mus t be negligible in compariso~ with the bed s l ope ; 
i . e ., the flow must be essentia l ly uniform. It was 
thus concluded that f l ood waves will be kinema tic i n 
rivers with s l opes that are steep , but flatter t han 
those found in torrential mountain streams. Woolhiser 
and Liggett (1967) also examined t he hydraulic 
conditions required by the kinematic flow assumotion 
and concluded that much of the experimental work 
on overland flow has been carried out under essen tially 
kinematic conditions . 

I wagaki ( 1955) used t he k i nematic assumption 
implicitly in his analysis of unsteady f low in steep 
channels . However, the kinematic wave technique was 
first applied to flow over a slopi ng plane by Hender­
son and Wooding (1964). In a series of three papers, 
Wooding (1965a, 1965b, 1965c) discussed the applica­
tion of kinema tic wave theory t o t he overland and 
channel components of runoff from a hypothetical V­
shaped watershed consisting of two rectangular planes 
and a stra i ght channel . Investigation of the response 
of this elementary watershed system represents one of 
the first attempts to simulate catchment behavior 
using the kinematic wave technique . 



The rLsLng hydrograph of overland flow on a 
single plane has been analyzed by woolhiser and Liggett 
(1967, op . cit.) using both t he sha llow-water equations 
and their kinematic a pproximation written in dimension­
less form. Compa(ison of (esults obtained from the 
complete equations and from the kinematic wave solu­
tion disclosed t hat the degr ee of depart ure was 
related to t he dimensionless parameter , k • This 
parameter is an index rep(esenting the magnitude of 
slope and friction effects --i . e., high values of k 
indicate tha t slope and fr i ction dominate the f low and 
con sequently t hat the kinematic hydrograph is a good 
approxima tion to t hat derived from the complete shal­
low-water equations . Because of the finding that the 
shape of the dimensionless hydrograph can be dependent 
on both k and the Froude number, it wa s concluded 
that there can be no unique dimensionless rising 
hydrograph of overl and f low- - i n con t rast t o the con­
ten tion of Izzard (1946). Morgali ' s (1968) analysis 
of experimenta l overl and flow hydrographs by means of 
the kinematic equations is noted in this regard . 
Woolhiser (1969) has further discussed kinematic flow 
on an inverted cone-shaped surface having a specified 
degr ee of convergence at the apex. Thi s bas i c water­
shed element is investigated later in the current 
study . 
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The reductionist approach to watershed simulation 
alluded to earlier in this paper was used by Huggins 
and Monke ( 1966) in developing a distributed wat ershed 
model . They employed a finite element or square grid 
technique for decomposing a complex watershed into 
elementa l s ur face units . The kinematic wave technique 
was then applied sequentially in the downstream direc­
tion to route over land flow generated by each subarea 
and t hereby obtain a complet e hydr ograph of watershed 
runoff . As in the kinematic cascade used by Braken­
siek, the value of Mannings roughness was adjusted 
t o minimize the discrepancy between observed a nd com­
puted hydrographs . 

Other work on which the present study is based is 
identified at appropriate points in the text . However, 
the literature on overland flo~ is replete with i n ten­
sive analytical and experimental investigations and 
clearly, an exhaustive review is outside the scope of 
t he presen t effort . FO( a summary of related work in 
the areas of numerical flood-routing methods, exper i­
mental overland flow, mathematical watershed models, 
and f inite-difference solutions to the s hall ow-water 
equa tions reference is made t o a publication by 
Kibler (1968). 



Chapter II 

KINEMATIC EQUATIONS FOR A CASCADE OF PLANES 

The kinematic flow relations are based on the 
continuity and momentum equations , commonly referred 
to as the De Saint-Venant or shallow-water equati ons . 
These basic equations are derived in Appendix A. In 
the ki~ematic wave derivations which follow, the depen­
dent quantities are the local velocity , u , in fps and 
the depth, h , in feet . The independent variables 
are the space-time coordinates , x in feet, and t 
in seconds, respectively. 

Kinematic flow on planes and in channels arises 
whenever a balance between gravitationa l and frictiona l 
forces is achieved . The existence of such a balance 
implies that the derivatives of the energy and velocity 
tenns in the momentum equation a r e negligible in com­
parison with gravity and friction effects . The momen­
tum equation is thus reduced to the form: 

( 1) 

where S and Sf are the bed slope and friction 

slope, respectively. The hydraulic conditions required 
by this assumption have been examined by Lighthill and 
Whitham (op.cit.), Henderson (op.cit.) and by Wool­
hiser and Liggett (op .cit.). 

The continuity equation appears in the usual form 
for planes or wide rectangular channel s 

where q is the lateral inflow (precipitation less 

infiltration) in cfs/ft2. 

In this study a parametric form of the Chezy 
friction relation is used to represent equation (1) 
as follows: 

N-1 
u = ah 

(2) 

(3) 

where a and N are parameters related to channel 
(or plane) roughness and geometry. For a wide channel 
or plane, a and N have values 

a - c;s- ; N = 3/2 

where C is the Ch~zy roughness coefficient. 

Dimensionless Equations for ~ Plane 

(4) 

The characteristic equations can be expressed in 
dimensionless form by defining normalizing quantities 

th for the ~ overland flow plane. 

Let Qk • maximum or steady-state discharge per 

foot of width from the downstream boundary of the 
th 
~ plane resulting from qk , where qk is the 

maximum rate of rainfall excess in cfs/sq . ft. 

units for the first through the ~ plane . 
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where and are the length and width, 
th k- plane. respectively, of the 

In general Qk is given by the summation 

k 1 
Q = - r q .• 11 . w. 

k wk i""l 1 1 

th Let Lk = normalizing length for the k-- plane 

k 
Lk r li 

i•l 

•.-~here 11 is the length in feet of plane i . 

Let Hk - normal depth in feet corresponding to 

Qk at the downstream boundary of the kth 

plane . 

., . (::) ~ 
where ak and N are Chezy parameters of the 

th 
~ plane. 

(5) 

(6) 

(7) 

(8) 

Let Vk • normal velocity in fps correspo~ding to 

Qk at the downstream boundary of the ~ plane. 

Let Tk • normalizing time in seconds for the 

kth plane 

The normalizing quantities have been obtained 

(9) 

(10) 

the assumption that the planes have equal lengths: 
12 • • • • = ln. 

Substituting the parametric friction relation in 
the continuity equation and using the normalizing 
quantities of equations (5) through (10), the dimen­

th 
sionl ess kinematic flow equation for the ~ plane 
is given by 



oh* + Sh~-1 oh* 

ot* ox* 
(11) 

where the asterisk indicates the terms are dimension­
less. The only terms in equation ( 11) previously un­
defined a r e q* and i:l • The di mensionless lateral 

inflow i s: 

( 12) 

where Ik is the norma lizing lateral inflow given by 

(13) 

and the parameter S is defined as 

n 
E l. 

i=l l 

The dimensionless characteristic 

from equation (11) for the ~ 
of n planes are : 

dx* ~ 

dt* 
Sh:-l 

dh* -

dt* 
q* 

n 
E 1. 

i= l l 

(14 ) 

equations developed 

plane in a cascade 

( 15) 

The asterisk has been dropped from t he dimensionless 
equations for the remainder of t his paper except where 
noted . Integration of equation (16) leads to 

where h and t 
0 0 

time, respectively. 
tic curve, obtained 
i s: 

t 
1 

t +-
0 q 

( 17) 

are initial values of depth and 

The equation of the characteris­
by integra tion of equation (15) 

( 18) 

When the l a t era l inflow rate, q , becomes zero , t he 
hydrograph recession is described by t he equations: 

h = h 
0 

(19) 

x= X 
0 

+ ~h N-l(t 
0 

- t o) (20) 

X - X h 1-N (21) t t + 0 
0 

~ 
0 
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wher e x
0 

t
0 

, and h
0 

are the values of x , t , 

and h at which the lateral inflow ceases. 

The dimensionless velocity of flow on the kth 
plane , as given by the Chezy formula , in terms of the 
dimensionless depth is: 

N-1 
u = h (22) 

From equation ( 22) the dimensionless discharge per 

foot of width leaving the kth pl ane is obtained as 

(23) 

Equations (17) t hrough ( 23) can now be used t o 
compute t he entir e outflow hydrograph arising from 

th 
known rates of rainfall excess, q , on t he k--
plane. 

The problem of hydrograph computation for the ~ 
pl ane i s t hus completely specified once t he initial 
depths along plane k at time zero and the inflow 
hydrograph coming from plane k-1 are known. The 
i nitial and boundary condit ions for the cascade are as 
follows : 

plane 1: h l ( xl , 0) = 0 

hl (0 , tl) 0 

plane k: hk ( xk , 0) 0 

hk (0 , tk) "' f(hk-1 , tk-1) (24) 

That is, all planes in t he cascade are considered dry 
at time t = 0 ; the inflow hydrograph coming 
from the previous plane in the cascade establishes the 
flow at the upstream boundary for t > 0 . No f low 
enters at the upstream bounda ry of plane 1. Beca use 
of the differ ence in normalizing quantities used i n 
defining t he di mensionless flow variables for each 
plane, it is necessa ry to convert the depths and times 
associated with the inflow hydrograph at the upstream 
boundary to t hose of the current plane . The following 
recursion formulas have been developed for that 
purpose : 

1/N 

t k = k - 1 - --
tk-1 k 

( 25) 

k-1 1/N 

} w. 

~ 
l 

i =l (26) 

hk-1 k 

I wi 
i a l 



where tk_1 and hk·l 

stream boundary of plane 

are time and depth at the down-

k-1, and and are 

the corresponding time end depth at the upstream 
boundary of plane k . The use of these relationships 
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allows all computations to be done in dimensionless 
quantities wit h a general program for plane k . 

The dimensionless equations for a cascade of wide 
rectangular channels are analogous to those for 
planes and so will not be reproduced here. 



Chapter III 

KINEMATIC SHOCK-WAVE FORMATION 

Several dimensionless rising hydrographs were 
computed for various two-plane cascades to obtain 
estimates of the influence of the parameters ~ 

(Chezy slope-roughness coefficient) and w (width of 
P'lane) on the outflow hydrograph. Rowever, it soon 
became clear from t he hydrograph computations that 
s hock-wave formation occurred for certain ~ and w 
combinations and that these shock waves had a profound 
influence on the properties of the hydrograph . The 
discussion of this chapter is thus directed at the 
properties of shock waves i n kinematic flow. 

A shock wave is represented by the intersections 
of characteristics in the x - t plane and produces 
an abrupt increase in flow depth. The surge causes 
successive wavelets t o t ravel with greater celerity 
so that earlier wavelets are eventually overtaken and 
a shock wave, representing the coalescence of wavelets, 
i s formed. Since the discharge-depth relation at the 
poi nt of intersection of two characteristics i s no 
longer valid, it is necessary to terminate the charac­
teristics at t he i ntersec tion and fit in the path of 
the shock. The path of the shock wave in the x - t 
plane will be given by the locus of the intersection 
of pairs of characteristics. There are two main 
o bjectives in this section: (1) to establish when 
shock waves will form in terms of the ~ and w 
ratios between two successive planes in the cascade; 
and (2) to devise a technique for tracing the path 
of a shock wave in the x - t p lane and determining 
the time at which it intersects the downstre~m 
boundary of a given plane. 

--

The solution domains are s hown for planes k 
and k- 1 in Figure 2. The domain enclosed by the 
line t = 0 , t he downstream boundary and the charac­
teristic originating at t = 0 at the upper boundary 
of the plane is indicated by the letter A • Within 
this zone the solution depends only on the initial 
conditions at t = 0 for that plane. If the initial 
conditions are uniform and the overland slope par a­
meters are constant for each plane, characteristics 
originating along the x-axis at tk = 0 cannot 

intersect. This is seen from the fact that in order 
for an intersection to occur, the slopes of the 
charact eristics must bear the f ollowing relation a t 
the point of inter secti on: 

dx 
dt 

Since 

plane 

along upper 
characteristic 

> dx 
dt 

along lot~er 
characteristic 

( 27) 

dx "hN-1 dt • ~ and h = qktk in domain A for 
dt 

k , the slope dx is constant at any given 

time t and hence the inequality in equation ( 27) 
can never be satisfied in this zone . It follows that 
a shock can never originate in domain A , although 
char acteristics originating along the upstream 
boundary may intersect those in domai~ A . This 
argument holds for the case of changing qk , the 

latera l inflow rate for plane k , since at a given 
time coordi-nate qk will be a known constant and · 

--------

A 

X k -I 

Figure 2. Solution domain for planes k and k-1 . 
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hence the slope dt 
~ at that point in time is also a 

constant for all characteristics in A . It is con· 
c luded from this argument that a shock wave can never 
form on the uppermost plane in the cascade for initi­
ally dry conditions . 

In the domain labeled B in Figure 2, the solu· 
tion depends upon the upstream boundary condition of 
plane k which in turn is affected by the initial 
conditions for plane k · 1 The necessary condition 
for an interesection of the characteristics 1 and 

2 is: 

dx I dxl 
dt I > dt 

2 l 

(28) 

where the derivatives are the inverse s lopes of the 
characteristics originating at t 2 and t 1 , res-

pectively. From equations (15) and (25) we obtain the 
condition at the intersection 

or 
( 29) 

By integrating the characteristic equations we obtain 

( 30) 

where h1 , and h2 a r e the depths of flow at times 

t 1 , and t 2 , respectively. Substituting equation 

(30) into inequality (29) leads to : 

( 31) 

For uniform stepped lateral inflow the depth in 
zone A for plane k·l is: 

(32) 

By converting and to and 

using equations (25) and ( 26) and substituting these 
relationships into inequality ( 31), we obtain t he 
following after algebraic manipulation : 

(33) 

Equation ( 33) defines the shock parameter , P
5 

, and 

establishes that shock formation will occur on plane 
k whenever Ps exceeds unity for the condition of 

a spatially uniform stepped time-distribution of 
rainfall excess. Note that while equation (33) is 
valid for time varying lateral infl ow , it does not 
hold when the inflow changes with distance . 
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Hence, the inequality of (33) is the general 
shock-wave criterion, denoted by Ps , for zone B 

of any plane k . If it is satisfied, then an inter· 
section of any characteristic emanating from the up· 
stream boundary in zone B and a characteristic 

originating along (x,o) occurs somewher e in the 
(extended) x - t plane, though not necessarily within 

the boundaries of the ~ plane for a sufficiently 
small interval, t 2 - t 1 , on the tk axis . It has 

been shown that for initially dry conditions and a 
time-varying, spatia lly uniform rainfal l excess , shock 
waves cannot originate in zone A of any plane , includ­
ing plane k • l • However, shocks originating in 
other reaions can be propagated into zone A . Further, 
it is clear that zone B is the critical one from the 
standpoint of shock-wave formation and propagation in 
other planes of the cascade . Sequential application 
of the general rule stated in equation (33) to the 

k · 2 preceding planes permits one to determine the 
th number of shocks crossing the k-- plane in the 

cascade. 

Shock-Wave Propagation - Tracing the Shock Path 

In an early paper dealing with kinematic flood 
waves, Lighthil l and Whitham (op . cit. ) outlined a 
technique fo r obtaining the path of a shock wave in 
t he x - t domain. Their semigraphical method is 
based on continuity of flow and the rate at which flow 
passes a kinematic wavelet having a given velocity. 
The procedure described in this chapter is based on 
the geometry of characteristics which intersect on the 
shock path and the continuity of fl~~ across the shock 
front . Figure 3 shows the general features of a shock· 
wave path as defined by the locus of successive pairs 
of intersecting characteristics . In particular, two 
intersecting characteristics, labeled A and B , 
ori ginate at xi , ti , and xu , t u , respectively, 

and carry initial depths hi and hu at ~hose points. 

The space-time coordinates at the point of intersection 
are xs and t

5 
, respectively, as shown for the 

characteristics labeled A and B in Figure 3. 

Xu 
lu 

X. I 
I I 

( x,. t,, 

A- Characteristic 

Figure 3. Shock-wave path given by locus of 
intersecting characteristics. 



From the equations for the characteristic ground 
c urves, the following system of equations can be 
developed for the A and B characteristics: 

The B charac t eristic is defined by: 

'• . '• • * [Ex,. -·/'f • •. ~ "" -•.] <"l 
when~ and tb are coordinates along the 

B-characte ristic curve; N and ~ are parameters 
defined previously; q is the rate of lateral 
inf l ow; tu and hu are the initial values of 

time and depth, respectively, for t he B 
chatact eris tic . 

The A characteristic is defined by: 

( 35) 

Equations ( 34) and ( 35) along with an expression 
for the local velocity of the shock wave 

v = ~ 
s N 

( 36) 

a r e sufficient to obtain the shock path by a numerical 
procedure. 

Iterative Scheme for Locating t he Shock Path 

The procedure is as follows . The x axis is 
divided in increments As as shown in Figur e 4 . The 

liS 

S · 
J 

shock path originates at the point (0,0) and its 
velocity is first approximated by expression ( 36) . 
The time of arriva l of the shock at s 2 can then be 

obtained and equations ( 34) and (35) can be solved 
for tu and x1 . The depths ~ and ha at s 2 
can then be computed and are substituted back into the 
expression f or shock velocity. This itera tive proce­
dure is con tinued until t 2 is stabilized at s 2 . 

Then the shock path is projected to the next coordinate 
s

3 
by using the stabilized flow depths at s 2 in 

e·quation (36) and the process is repeated. T'his proce­
dure is terminated when the downstream boundary is 
r eached . The discharges Q

8 
and Qb existing on the 

shock path at the time of its arrival at the downstream 
boundary are t hen inserted in the outflow hydrograph. 

th When all shock paths traversing the ~ plane have 
been projected to the downstream boundary, the va lues 
of xi and tu (or ti and t u ), corresponding to 

the intersection at this boundary of each shock path , 
c an be used in fi l ling with characteristics that por­
tion of the x - t plane unaffected by shock-wave 
propagation . A complete outflow hydrograph, showing 
the effects of shock formation, can thus be obtained . 

Shock-Path I ntersections 

If a first- order or simple shock wave is defined 
as the locus of intersecting A and B characteris­
tics, then second-order shocks would be those result­
ing from the convergence and intersection of adjacent 
shock paths. While higher order shock waves could 
conceivably be produced by the mathematical model 
r epresenting the cascade, attention is focused on the 
s imple or first-order case. 

sn 

B - Character ist ic 

X 

Figure 4 . Scheme for describing complete locus of 
shock-pa th by use of AS increments . 
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Chapter IV 

RESULTS OF KINEMATIC SROCK FORMATION 

Tracing the Shock Path 

To il lustrate certain aspect s of t he method des ­
c r i bed in the last chapter, a three-plane kinematic 
cascade was defined i n such a way that shock formation 
occurred at the origins of p l anes 2 and 3. The unif orrr 
l a t eral i nflow was a pulse of rainfall excess having 
intensity 0 .75 in . /hr. and duration 30 minutes . The 
planes described below are listed in order of highest 
e l evat i on. All three pl anes are equal with respect t o 
length, width, and roughness . Only the over lano slope 
i s different as indicated by variations i n the ~ 

parameter . 

Table 1. Description of Three-plane Cascade 

Plane No . ~ = ct.r
0 

l 

2 

3 

Q) 

E 
1-

IJ> 
IJ> 

0.5 

0.4 

~ 0.3 
.2 

IJ> 
c 
Q) 

.s 
0 0.2 

* 

0. 1 

10.0 

5.0 

2. 5 

Length-ft. Width-ft. 

400 4 00 

400 4 00 2. 0 

400 4 00 2.0 

Plane 2 

Shock- path 

Intersecting Characterist ics 

2 - A 

The shock paths crossing planes 2 and 3 are pre ­
sented in Figur'e 5 . The s hock-path computations, 
involving integrations along the intersecting charac­
teristics, were carried out by means of the dimension­
less ki nema tic flow equations . On ly those charac­
teri stics which intersect on the shock path at the 
downstream boundaries of planes 2 and 3 are shown. 

Several features of t he shock paths presented in 
Figure 5 are n oteworthy . The first is that shock 2-A 
travels faster t han either shock 3-B (a conti nuation 
of s hock 2-A) or 3-A even t hough the shock-parameter, 

P 
5 

, i s equal on both planes. Thi s i ndi cates t he 

dependence of absolute shock speed on the overland 
slope of plane 3, s ince (assuming constant roughness) 
the slope of plane 2 is four times that of plane 3. 
The apparent d iscontinuity in shock path 2-A is t hus 
a ttributed t o a sudden decrease i n velocity upon t he 
shock ' s arrival at t he upstream boundary of plane 3. 

Another i nteresting aspect o f the shock paths 
illustrated i n Figure 5 is t he constant velocity of 
propagation achieved over the lower portions of each 
plane. This can be obse rved from the l inearity of 
shock 3-B over the enti re l ength of plane 3. Such a 

Plane 3 

Shock 3 - A 

0 4-~--~------~------~------~~--~~------~----~------~ 
0 .333 0.417 0.500 0.583 0.667 0. 750 0.833 0.917 1.000 

x* = Dimensian lezs Distance along Length of Cascade 

Figure 5. Shock-paths on planes 2 and 3 for t he cascade of Table 1. 
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condition, once detected, could be used to project the 
shock p~th across greater 1istances and thereby in­
crease the speed of the iterative procedure described 
in the last section . 

The outflow hydrograph for plane 3, showing the 
surges in discharge associated with shocks 3-A and 3-B, 
is presented in Figure 6. The outflow hydrograph ob­
tained when shocks 3-A and 3-B are ignored is shown 
for purposes of comparison by means of a dashed line 
in Figure 6. This hydrograph was obtained by eliminat­
ing from the computations those characteristics passing 
through disturbed regions of the x* - t* plane 

created by the shock. It therefore represents an 
approximate soLution over the two intervals, shown in 
Figure 6, which are affected by the arrival of kinema­
tic shock waves. 

1.00 

0.20 

Figure 6. Dimensionless hydrograph for cascade of 
Table 1 showing effect of 2 shocks on 
plane 3. 

Shock Paths for Various 2-plane Cascades 

In order to examine the effect of the shock para­
meter, P

5 
, on the shock path, a number of 2-plane 

cascades were defined as indicated in Table 2. The 
len~ths and widths of the upper planes were held 

constant while the slopes, as represented by the a 
parameter, were varied between the limits: 1.25 < a 
< 10.0. The lower plane was maintained at a constant 
l ength, width and slope for all cascades. The Chezy 
C factor was assumed constant for all planes. The 

res ulting ratios of overland slopes for the upper and 
lower planes in each cascade are also listed in Table 2. 
Lateral inflow was given as a uniform pulse having 
intensity 0.75 in./hr. and duration 30 minutes. 

The family of shock paths observed on plane 2 
of the cascades described in Table 2 is presented in 
Figure 7. The influence· of the shock parameter, P5 

is clearly evident from the decreasing passage times 
of shocks associated with high Ps values. This 

result indicates the dependence of shock velocity on 
P

5 
when the slope of the lower plane is held constant. 

The same shocks would occur if the slopes for 
each plane were the same but if the Chezy C were 
varied so that a remained as shown in Table 2. 

11 

Table 2. Description of upper and lower 
planes in 2-plane cascades. 

Cascade 
No . 

(upper 
planes) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

(lower 
planes) 

0 .70 

0 .60 

0.50 

'· 
0.4 0 

0.30 

0.20 

a - slope 
Length 

ft. 

1.25 
1. 50 
1. 75 
2.00 
2 . so 
3 . 00 
4 .00 
5.00 
6 . 00 
7.00 
8.00 
9.00 

10.00 

1.00 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

100 

LEG END 
Curve 

I 1.25$.P5 $.2.00 
2 2.50 $. P5 .5. 3.00 
3 Ps = 4 .00 
4 P5 • 5.00 
5 P5 = 6.00 
6 P5 = 7.00 
7 8.00 5: P5 ~ 9.00 
8 P5 • 10.00 

Width 
ft. 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

400 

2 

l. 25 
l. so 
l. 75 
2.00 
2.50 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 

7 
6 

1 4
5 

3 

8 

l. 56 
2.25 
3.06 
4.00 
6.25 
9.00 

16.00 
25.00 
36.00 
49.00 
64 .00 
81.00 

100. 00 

0.00 ._ __________________ ____J 

0.50 0.60 0.70 0.80 0.90 1.00 

Figure 7. Shock-paths in dimensionless x* - t* 

plane for various p
5 

values and 

cascades of Table 2. 



In order to moce fully investigate the effect of 
changing P

5 
on the shock path, another series of 

2-plane cascades was defined. According to this defi­
nition, the upper plane was held constant with 
a= 10. 0, length a 400 feet, and width = 400 feet. 
The lengths and widths of each lower plane were set 
at 400 feet, while the overland slope was varied in 
the r ange 1. 00 < a< 8. 00. The shock parameter was 
thus given values over t he interval 1. 25 < P

5 
< 10. 00 

as in the previous set of cascades . 

The resulting shock paths possessed the general 
features presented in Figure 7, except that they 
varied with Ps in reverse order . That is , the shock 

paths associated with higher values · of p arrived 
s 

at the downstream boundary of plane 2 later than 
those having a smaller value of P This inverted 

s 
relation between Ps and time of arriva l i s a result 

of the shock traveling across an overland plane of 
small slope compared with the second plane having the 
same P

8 
in the previous set of cascades described 

in Table 2. 

Outflow Hydrographs for Various 2-plane Cascades 

The outflow hydrographs observed a t t he downstream 
boundary of the second plane for the cascades of 
Table 2 are presented in Figure 8. It is observed 
that the hydrographs for all cascades coincide over 
the regions chat are outside the influence of the 
shock front . The effect of P is evident from the s 
varying position of the vertical portion of the rising 
limb representing the surge in flow created by shock 
formati on. Previous results have shown that both the 
strength and velocity of the shock will increase 
directl y as Ps for t he cascades of Table 2. This 

relationship is clearly observable in the outflow 
hydrographs of Figure 8. 

1.00 

0.80 

0.60 

a. 

0.40 

I - 1.25S P.S 1.50 
2 - P. • I .75 

3- P. • 2.00 
4 - P. • 2.50 
5- P. • 3.00 
6- P1 • 4.00 
7- P. • 5.00 
8 - 6.00 s P. s 8.00 
9 - 900 S P.S 10.00 

1.00 1.50 

'· 
2.00 

Figure 8. Dimensionless outflow hydrographs for 
various P

5 
values and cascades of 

Table 2. 
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The dimensionless shock paths and rising hydro· 
graphs presented in Figures 7 and 8 , respectively, 
are perfectly general for cascades of 2 planes, having 
equal l engths, widths, and roughness, in which the 
l ower plane is fixed with respect to overland slope. 
The equilibrium and r ecession portions wi ll vary 
according to the equilibrium time of the lower plane, 
which in turn is a function of the length, width, and 
slope of both planes . Si nce the discussi on of this 
section has centered on the effect of shocks on the 
rising limb, further dimensionless results are not 
presented. 

Kinematic Shocks in Partial Equilibrium Hydrographs 

When later al inflow ceases before steady-state 
conditions are establi shed, outflow from the lower 
plane peaks at a rate less than that of the lateral 
inflow pulse . Because characteristics become straight 
lines and carry const ant depths after lateral inflow 
ceases, it is anticipated that t he depths across the 
shock and consequently the shock path itself will 
differ from the ful l equilibrium case . 

In order to determine the effect of shock forma­
tion on partia l equilibrium hydrographs, the 3-plane 
cascade of Table 1 was run for a l a teral inflow pulse 
of intensity 0.75 i n. /hr. and durations 15, 20 and 25 
minutes . Since t he 3-plane cascade reaches equilf­
brium in approximately 22 minutes for this lateral 
inflow rate, the first two cases will produce partial 
equilibrium hydrographs while the third will produce 
full equilibrium. 

The resulting 3-plane hydrographs are shown in 
Figure 9 in which shocks A and B are indicated by 
heavy vertical lines . Several features of Figure 9 
are of interest . The first is that , al t hough the 
depths across shocks A and B decrease with decreas ­
i ng pulse length , the speed of each shock remains 
approximately constant . Hence the shock path is not 
significantly affected by cessation of lateral inflow. 

25 Minute-----i 
Pulse Length 

0.75 

0.75 LOO 0.25 0.50 t 
* 

Figure 9. Dimensionless partial equilibrium 
hydrographs for the 3-plane cascade 
of Table 1 with 2 shocks on plane 3. 



A simple computation reveals that t he shock strength, 
as measured by the ratio h /h , is roughly constant B A 
for s hock A and shock B occurring in the hydro­
graph of Figure 9. This result is in agreement with 
the motion of a shock wave whose speed is independent 
of l atera l inf low cessation . 

250 

200 

0 
Q) 
(J) 

• T= I 0 

150 
Another interesting aspect of Figure 9 is that 

portion of t he hydrograph which connects the two 
shocks. It is evident that this connecting portion 
becomes flatter as the pulse duration is decreased. 

.., ..... 
20 Experimental 
30 

If the pattern observed in hydrograph 3 were continued, 
it is expected that eventually the linkage between 
successive shocks would become horizontal. The result­
ing partial equi l i brium hydrograph would then exhi bit 
a stair-step structure in the region affected by the 
arrival of successive shock waves. This feature, 
observed in hydrograph 3, is a consequence of s hocks 
arriving at the downstream boundary after lateral in­
flow has stopped. 

Iwagaki (1955) performed some laboratory experi­
ments involving unsteady, open-channel flow with 
lateral inflow. One set of experiments was run in a 
flume 24 meters long, where the uppermost 8-meter sec­
tion had a slope of 0 . 020, the middle section slope 
was 0.015 and the lower section slope was 0 . 010. 
Under conditions of uniform lateral inflow the kinema­
tic model would predict three s hocks . Iwagaki , how­
ever, adjusted the lateral inflow supply so that the 
middle section had a lower rate of lateral inflow than 
t he upper and lower section . The hydrographs he obtai n­
ed a.re reproduced in Figure 10. These hydrographs can 
be qualitatively compared with the partial equilibrium 
hydr ographs in Figure 9. Obvi ously the physica l mani­
festation of a kinematic shock is a rapid rise in the 
outflow rate as the shock reaches the downstream bounda­
ry . Furthermore , it appears that the kinematic repre­
sentation of a shock will lead to errors in a very 
small region of the outflow hydrograph. 

Difference Solutions to the Kinematic Equation Using 
Rectangular Grids 

In investigating the properties of the kinematic 
cascade it seemed desirable to use the method of char­
acteristics and a characteristic net to minimize 
errors . The possibility of large discontinuities in 
the solution at kinematic shock waves also seemed an 
important consideration in the choice of a numerical 
method . For practical cases, however, rectangular 
grid schemes are much easier to work with. According­
ly, we compared solutions from three rectangular grid 
schemes with solutions obtained by the method of char­
acteristics . The three rectangular grid methods used 
were: (1) the upstream differencing me thod; (2) the 
single-step Lax-Wendroff scheme (Houghton and Kasahara, 
1968) and ( 3) the four-point implicit scheme used by 
Brakensiek (1967a) . The finite difference formulation, 
the order of approximation and the linear stability 
criterion for each of these schemes is shown in 
Table 3. The derivation of the single-st ep Lax­
Wendroff method and stability calculations for the 
three methods are included in the Appendix. For a 
definition sketch of the notation in Table 3, see 
Figure 11. 

Dimensionless hydrographs computed by the above 
three methods and by the method of characteristics are 
shown in Figure 12. The input pulse dur ation was 
equal to the time to equilibrium of the 2-plane cas ­
cade. The smoothing effect of the rectangular schemes 
is clearly shown and the second-order Lax-Wendroff 
method does give the best approximation. In general, 
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Figure 10 . 

t 

20 30 

Theoretical and experimental overland 
flow hydrogr aphs showing physica l 
manifestation of kinematic shock waves 
(after Iwagaki, 1955) . 

I' 
b.x 

~--~-------+-------+----i +l 

b.t 

j + I 

X 

Figure 11 . Notation for finite-difference schemes. 

80 

the peak response is delayed and r educed by as much as 
2~4 for the first-order schemes. Differences of this 
magnitude seem to be sufficiently gr eat t o warrant 
further exami·nation . 

We have not experienced any i nstabili ties in the 
d ifference schemes attributable t o the shocks, but 
this is a possibility. In Brakensiek ' s method the 

equation for hi+l is nonlinear and must be solved 
j 

by an iterat~ve ,procedure . With strong shocks and 
small 6t increments there was no positive solution 
for this equation for the first 6x increment on t he 
second plane. However, Brakensiek's method has the 
important advantage of unconditional stability which 
may result in. more rapid calculations because fewer 
steps are required. This advantage may be partially 
or completel y offset by the iterative procedure 
required. · 
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Table 3. Rectangular Grid Finite-Difference Schemes 

Finitu Di(f~renc~ Eq uation 

Duration of Input Pulse 

0 

Oroer ot 
Approxi­
ma cion 

0(6x)
2 

O(llx) 

O(llx) 

Linear S tobility 
Criterion 
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Nkh N-l tlx 

g ~ n 
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a 1 = 10 

a 2 = 2.5 
w, = w2 , L, " L2 

b.x = 0 .05 
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Figure 12. Comparison of finite-difference methods . 
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Chapter V 

APPLICATIONS OF THE KINEMATIC CASCADE TO COMPLEX WATERSHED GEOMETRIES 

In any practical application, use of the kinematic 
cascade t o simulate surface runoff from complex water­
sheds will introduce certain e rrors of approximation . 
These errors are associated with the manner in which 
the cascade is adapted to actual watershed confi gura­
tion. For example, a converging overland surface will 
be replaced by a series of rectangular planes with 
decreasing widths , while a complex continuous overland 
slope will be r epresented by a series of discrete 
planes with individually uniform slopes . It is evident 
that by making the individual plane l engths small 
enough ( i . e ., increasing the number of planes in the 
cascade) we can minimize the errors of approximation 
associated with the kinematic cascade transforma t ion. 

Comparison with Exact Solutions for a Converging 
Surface 

One test of t he kinematic cascade is t o determine 
how well cascade solutions conform to those exact solu­
tions obtained for selected watershed shapes . Wool­
hiser (1969) has obtained such exact solutions for 
kinematic flow on a converging surface, as shown in 
Figure 13. The purpose of this chapt er is to compare 
kinematic cascade solutions with kinematic soluti:>.ls 
for overland flow on a converging watershed surface. 

For the geometry of the converging section shown 
in Figure 13, the continuity equation has been written 
by Veal (1966) as : 

.Qh + ouh - q + uh 
o t ox (L

0 
-x) (37) 

The momentum equation i s given by the friction rela ­
tion of equation (3). Woolhiser (1969) has derived 
the characteristic equation, based on equations ( 3) 
and (37), and has put them in dimensionl ess form. He 
introduced a parameter r which defines the degree 
of convergence exhibited by the section--a small value 
of r indicates high flow convergence, while as r 

Figure 13. Geometry of converging sectioa. 
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approaches unity, the convergence of flow tends toward 
that of a plane rectangular surface. 

The test case selected had the following 
parameters : 

L0 • 100 ft.; r • 0.1 Chezy c - 100; 

s • 0.05 N • 3/2 

The rainfall excess was 1 in./hr. applied for 90 
seconds. 

I n approximating the above converging section with 
a kinematic cascade we have s choice of the total num­
ber of planes, defined by n , and the size of the 

6x increment for rectangular grid schemes . The total 
number of grid points i n the x-direction is l/6x + 1. 
Hydrographs were computed for cascade configurations 
ranging f rom one plane to ten planes of equal length, 
with a maximum of 21 grid points in the x direction . 

The width of the ith plane of an n-plane cascade 
was calculated by the following ares-preserving 
relation 

. ( 38) 

i ~ i, 2 - - - n 

where e is the angle subtended by the converging 
section. 

Hydrograph calculations were carried out by 
using the second-order Lax-Wendroff scheme for the 
interior of each plane, while the upstream differ­
encing method was used at the downstream boundary. 
The results of these computati ons are shown in Fig­
ures 14(a), (b) , (c), and (d). The parameter B in 
Figure 14 is equal to the number of 6x increments in 
each plane . Therefore, nB is the number of incre­
ments in the cascade and is related to the number of 
computations performed. The information in Figure 14 
is summarized in Figure 15 where an error index is 
shown as a function of nB , with n as a parameter. 
The er ror index is defined as the sum of t he differ ­
ence between the characteristic-analytic solution and 
the finite difference solution at the time t o equili­
brium and at the time that lateral i nflow ceases. 
This is admittedly a rather c rude index and it is not 
r ecommended for general use . However, it i s adequate 
for this specia l case . 

An examination of Figures 14 and 15 shows that 
the error index decreases as nB increases for any 
n , but that very little accuracy is gained by in­

creasing nB from 15 to 20. The error index de­
creases as n goes from 1 t o 3, but for this case 
there appears to be a decrease in accuracy as n is 
increased f r om 3 to 4 . This probably occurs because 
as the number of planes is increased, the first - order 
differencing scheme for the lower boundary is used 



more frequently and pventually decr eases the overall 
accuracy of this solution. Shocks present in the cas­
cade solutions have been smoothed by the finite-differ­
endi ng method used to obtain outflow hydrographs . Al­
though ·this is by no means an exhaustive test, it ap­
pears that the kinematic cascade is very effective in 
handl ing lat er a l convergence and tha t three planes 
with ~x increments of 0. 0667 1

0 
will give satis fac­

tory r esults for linearly converging flow with r ; 0 . . 10 . 

Effect of Changing Overland Slope on Cascade Hydrographs 

A second set of computations was performed to 
examine the effect of varying overland slopes on hydro­
graph shape. The s lopes of each 3-plane cascade are 
shown in Table 4. 

Table 4 . Cascade Slopes 

Run No. 

1.0 

0.8 

~0.6 
...... 
.s 

1.0 

0.8 

~0.6 
.: 
a 

0.4 

0.2 

1 
2 
3 
4 
5 

• 

sl 
. 0197 
. 08 
. 025 
.065 
.05 

0 n =I, 8 = 2.0 
__ Characteristic ­

Analytic Solution 

60 

( a ) 

n 8 
I 10 
2 5 

• 3 3 . 4 2 

( c) 

Slope of Plane 

80 

52 
. OS 
. 05 
. 10 
. 02 
.OS 

0 

100 
Time (sec) 

120 

53 
. 08 
. 0197 
. 025 
. 065 
.05 

140 160 

Chorocteristic - Analytic 
Solution 

Each plane of t he 3-plane cascades was 36.67 ft. 
long, 1 foo t ~•ide, and has a Chezy coeffi c i ent C • 
100 . The total relief for each cascade was 5. 5 f t. 
A rainfall excess of 1. 00 i n . /hr . was applied for 100 
seconds which is the time of equilibrium of a single 
plane 110 ft . long with 5 percent slope . 

The results of t he computations are shown in 
Figure 16. The gener al shape of the rising hydro­
graph i s the same as the shape of the overland slope . 
The time to peak is not greatly a ffected by the shape 
of the overland-slope profile for this nea r-equi li­
brium situation , but it would be significantly 
affected for partial e4uilibriuro cases. There is 
a maximum difference of 10 percent i n t he peak rates , 
with the constant slope cascade having t he highest 
peak and the complex slopes (runs 3 and 4 ) having the 
lowest peak rate . The Lax-Wendroff scheme was used 
for all computations, so the same type of errors as 
evidenced i n Figure 11 are present . Shocks should 
theoretically occur in cases 2, 3, and 4. The finite ­
difference scheme smooths these shocks and probab ly 
attenuates the peaks . It is apparent from this 
exampl e t hat, for surfaces with the same length and 
relief, shape of the overland-slope profile is a sig­
nificant factor in determining the shape of t he r i sing 
hydrograph of outf l ow from the kinemat ic cascade . 
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~ -....0.6 
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0 

.: 

n 
• I 
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Solution 

60 80 100 120 140 160 
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Solution 
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Figure 14 . Kinematic cascade results compared with characteristic-analytic solution converging section 
r = 0. 10 L = 100 
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Figure 15. Effect of number of 6x increments on error index. 
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Chapter VI 

COMPARISON WITH EXPERIMENTAL DATA 

Experimental data have been obtained for the case 
of converging overl and flow at the Colorado State 
University Experimental Rainfall-Runoff Facility 
(Dickinson, Holland and Smith, 1967). The geometry of 
t he upper basin of the facility i s i den tical to the 

section of a cone shown in Figure 13. A 120° sector 
wi t h L = 110 ft . and r = 0. 0106 was covered with 

0 

butyl rubber . Lateral inflow was applied through a 
grid of sprinklers capable of applying water at four 
i ntensities: 0.5 , 1.04 , 2. 39, and 4 . 22 inches per 
hour . At the lowest intensity, nozzles are located on 
the corners of 40-foot equilateral t r iangles . To 
obtain the higher intensities , additional nozzles are 
activated . The rainfall pa t tern is quite uniform, with 
coeffic ients of vari ation from 18% for 0 . 5 in . /hr. t o 
less t han 3% for 4 . 22 inches per hour . 

Runoff rates were mea sured with a 1. 5-ft . 
H flume equipped with a FW-l stage recorder that has 
been modified to attain a complete drum revolution in 
30 minut es . Time on the analog chart can be r ead to 
5 seconds . 

Experimenta l r uns were performed at each of four 
intens i ties . Each run cons isted of two pa r ts : an 
equilibrium run to estab l ish the steady-state input 
r a t e, and a parti al equilibrium run. 

The Chezy C was estimated from the equilibrium 
run da ta i n t he f ollowing manner . Woclhiser (1969) 
presented the following dimensionl ess equations for 
recess i on from equilibrium for flow on a converging 
s urface. 

x
0 

[2 - ( 1 - r) x0 J 
(l+r) 

( 39) 

2N-l f 
N J {40) 
l}N-1 X I -

OJ N 

Where Q* is the dimensionl ess d i scharge , r 

is the convergence parameter, x
0 

i s t he origin of 

the characteristic , t~ i s the time after lateral 

inflow stops unti l a characteristic originating at 
x

0 
t

0 
intersects the downstream boundary x • 1, 

and N is the exponent as defi ned in equation ( 3). 
The dimensionless recession hydrograph can be obtained 

by subs tituting values of x
0 

( O<x
0
<l) i nto equa­

tions (39) and (40). This hydrograph is shown in 
Fi gure 17. 
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a. 

0~------~----~~------~------~ 
0 1.0 2 .0 3.0 4 .0 

~~ 

Figure 17 . Dimensionless recession hydrograph . 

If we assume that the kinematic model with a 
constant C is adequat e for the converging section, 
we can estimate the normalizing time T

0 
from t he 

experimental r ecession from equi l ibrium and the dimen­
sionless recession curve. On Figure 17 t; • 1 when 

Q* m 0 . 76 , t~ = 2 when Q* = 0 . 46 and t~ ~ 3 

when Q* • 0 . 26. Let the time after later a l inf low 

i s s t opped until the appropriate dimensionless out­
flow is reached be tQ* . Then an estimate of T

0 

is given by 

Now T
0 

is defined as the time requi red to 

travers~ the d i stance L
0
(1-r) at a veloc ity of V0 

where V
0 

is the normal s t eady state velocity at the 

downstream boundary. From equa tion (3) 

N-1 
N 

L o (l-r) 
T 

0 

(4 2) 

Reca lling that a = Cff for the Ch.izy formula­
tion and N ~ 3/2 we obtain 

c "' (43) 



The converging section was approximated with a 
five-plane cascade with dimensions as shown in Figure 
18. The Lax-Wendrof£ method was used in the numerical 
calculations and five partial equilibrium cases were 
simulated. The characteristic method was also used 
for comparison. Results of the simulations for two 
partial equilibrium runs are shown in Figure 19 (a ) 
and (b) . In both cases the computed peak rates were 
higher than the observed peaks, but this was not the 
general case. In two of the five cases s imulated, 
com~uted peak rates were less than the observed rate. 
In general, t he observed hydrographs rise more slowly 
during the initial stages than do the computed hydro­
graphs. Although analysis has not proceeded far 
enough to explain this discrepancy, it could be 
accounted for by any one or a combina·t i on of the 
following: 

(1) Flow is initially laminar 

(2) A stilling-well lag 

(3) Interception losses occur so that onl y part 
of the area contributes initially. 

The timing of the peaks agrees very well and the 
recession hydrograph is accurately simulated by the 
kinematic cascade . 

Additional analyses of experimental data will be 
required before definitive conclusions can be reached 
but it appears that the kinematic cascade adequatel y 
simulates linearly converging overland flow over a 
butyl surface . By induction we might assume that the 
cascade could simulate more complicated converging 
flow situa t ions . 

w3 "116.3 ' 

L 

L1 = L2 • Li· · · = L5 ~ 2 1.8 ' 

S 1 = S2 = · · · · = S~= 0.05 

W4 = 70.2' 

W5 =24.7 ' 

Figure 18. Cascade appr oximation of converging section . 
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Figure 19. Comparison of kinematic cascade results with experimental data. 
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Chapter VII 

SUMMARY AND CONCLUSIONS 

It was hypothesized that the kinematic cascade is 
an appropriate mathematical model for describing the 
dynamic behavior of surface runoff. The mathematical 
properties of the kinematic cascade were first inves­
tigated. Solutions obtained by the method of charac­
teristics were used as standards of comparison in 
examining other finite-difference schemes . The appli­
cation of the kinematic cascade to complex watersheds 
was investigated by comparing cascade solutions to 
exact solutions and to experimental observations for 
flow on a linearly converging surface . 

Tho following conclusions may be drawn from this 
study. 

Mathematical Properties of Kinematic Cascade 

From the results obtained for both full and par­
tial equilibrium flow conditions, it is evident that 
the abrupt increase in discharge produced by the shock 
can be severe, particularly for high p

5 
values. The 

results of the 2-plane cascade tests demonstrate that 
the velocity of the shock, and therefore its path in 
the x-t plane, is dependent on the parameters Ps 

and a 2 which are computed from the physical specifi­

cation for a given plane in the cascade. The shock­
parameter, Ps , has been shown to be most closely 

related t o the strength of the shock and therefore 
influences its celerity or relative velocity . The 
slope-parameter, a 2 , on the other hand, governs the 

velocity of the flow immediately downstream of the 
shock. Hence, the absolute propagation speed of the 
kinematic shock is related to the two interdependent 
parameters, a 2 and P

5 

While the shock-wave phenomenon may arise under 
certain highly selective physical circumstances, it is 
looked upon in this study as a property of the mathe­
matical equations used to explore the overland flow 
problem rather than as an observable feature of this 
hydrodynamic process. Nevertheless, the tendencies 
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toward shock formation inherent in the kinematic wave 
approximation to the shallow-water equations have been 
ignored in recent investigations using this approach. 

Solutions of the kinematic equati ons in the pre­
sence of shocks were obtained by three rectan.gular 
difference schemes to evaluate errors of approximation 
attributable to various finite-difference methods . 
The three me thods studied were the upstream-differen­
cing method, the single- step Lax-Wendroff scheme, and 
t he four-point implicit scheme used by Brakensiek. 
Of these three methods, the Lax-Wendroff scheme yielded 
the best approximation to the exact solutio~ obtained 
by the method of characteris tics . The s moothing effect 
of all rectangular methods in the shock-affected 
region of the hydrograph was clearly visible and, in 
general, the hydrograph peak was reduced and delayed 
by as much as 20 percent for the first -order schemes . 
The significance of these errors requires further 
atudy. 

Applications of the Kinematic Cascade to Complex 
Watersheds 

In order to investigate the lumped errors associ­
ated with both the finite-difference scheme and the 
kinematic transformation of a watershed surface, kin­
ematic cascade hydrographs were compared with the 
exact solutions obtained for flow on a linearly con­
verging surface. Results of this application indicate 
that the kinematic cascade effectively reduces geome­
tric complexity and accurately simulates overland flow 
derived from rather complex watershed surfaces. Inves­
tigation of the effects of changing overland slope on 
the outflow from the kinematic cascade revealed a 
strong correlation between the general shape of the 
rising hydrograph and t he profile of overland s lope 
for the cascade. 

Although additional analysi s of experimenta l data 
will be required before definitive conclusions can be 
reached, it appears that the kinematic cascade accu­
rately simulates linearly conver ging flow on an 
impervious butyl surface. 
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APPENDIX A 

Derivation of the Shall ow-water Equations 

Introduction 

The flow of surface water over a uniform plane or 
in a channel is classified as spatially varied and 
unsteady. Accordingly, the basic equations of t he 
kinematic model designed to simulate the sur face run­
off process are derived from the principles of conser­
vation of mass and momentum. The derivations pr esented 
in this section follow the development in standard 
hydraulic references treating spatially varied unsteady 
flow. The dependent quantities are the local velocity , 

u , in fps and depth, h , in feet . The independent 
variables are the space-time coordinates, x in feet 
and t in seconds, respecti vely. 

Continuity Equation 

The sketch of Figure A.l illustrates the variables 
used in deriving the continuity equat i on for a plane 
or channel element of arbitrary cross-section having 
one-dimensional flow. The continuity equation written 
ove.r a time increment dt for the element of fluid 
shown in Figure A. l is: 

(A . u + q. dx) dt - (A + ~~ dx) (u + ~~ dx) dt 

(inflow) 

~ dt . dx 
(lt 

(change in storage) 

I 
h 

(outflow) 

(A-1) 

Figure A. l Definition sketch for conti nuity equat ion . 

Cancelling t he produc t A· u , divi di ng by dx· dt , 
and neglecting the higher order products, equation 
(A-1) becomes: 

OA + A ou + UOA " q (A-2) 
(lt ox ox 
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For channels of triangular or rectangul ar cross-section, 
the area can be expressed in the form: 

(A- 3) 

The constants b and m are equal to the width , W , 
and 1 , respectively, for a rectangular section, and 
equal to the side slope, Z , and 2 , respectively, 
for a t riangular section . Substituti on of (A-3) i n 
equation (A-2) yields the following relation: 

b·m· hm- 1 oh + b·hm ou + b · m·hm-1 'lh 
u_ q (A-4) 

ot ox ox 

In the case of a wide plane or channel, equation (A-4) 
can be written as : 

(A- 5) 

Equation (A-5) is the one-dimensional continuity equa­
tion for s urface f low over a wi de plane or channel. 

Momentum Equation 

An element of fluid rece~v~ng lateral inflow in 
cfs/sq.ft. is shown in Figure A. 2. Newton ' s second 

[ q =Lateral inflow cf5/ft2 

v 

u+ ~ ~ dx 

oFp 
·· -FP+J"Xdx 

Figure A. 2 Forces acting on fluid element used in 
deriving the momentum equation. 

law is written for t he forces acting in the 
tion, where x i s measured downstream. The 
inflow has a velocity component, v , in the 
tion. The basic equation to be satisfi ed is : 

~F = m du + m1 dv 
X S dt dt 

x-direc ­
lateral 
x-direc-

(A - 6) 



where and are the masses of water in the , 
main stream and lateral inflow, r espectively. 

Forces acting in the x- direction on the element are 
the following: 

( 1) The weight component acting in the downstream 
direction. 

where y is the unit weight of water and 
tht bed slope; 

s 
0 

(2) The hydr ostatic force acting to the right of the 
centroid of area 

F • yhA, 

where h is the distance from the water surface 
t o the centroid of area A; 

( 3) The hydrostatic force actin~ to the left at the 
centroid of area 

F + ~ dx "' -yhA + ~ dx 
p ox ox 

Liggett (1961) has shown that the hydrostatic pressure 
oF 

di fferential , ~ dx, is given by 

(4) The friction force retarding t he flow 

where Sf is the slope of the energy line. 

Hence the basic equation (A-6) may be written as 

Q!ld l:F X "' yA S 
0 

dx - yA Sf dx - yA ox X (A-7) 

The momentum changes on the RHS of equation (A-6) 
may be evaluated as 

du 1 Ad du 
msdt = g y XJt 

1 A 
gY d ca!:!. + ~ 

x ot ox 
dx) 

• dt 

1 A gv dx (~ + 
o t 

a!:!.) 
u ox (A-8) 

dv l -yq dx dt (~ ml dt = g dt 

1 q (u-v) dx gY (A-9) 
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where g is acceleration due to gravity and 

is interpreted as the total derivative of a 
particle along its stream path. 

du 
dt 

Combining equations (A-6), (A-7), (A -8) and (A-9) 
yields the momentum expression: 

yA S 
0 

dx - yA Sf dx - yA ~~ dx a i yA dx (~~ + u ~~) 

1 + g yq (u-v) dx (A-10) 

Dividing (A-10) by ~ yA dx and re-arranging: 

ou + u au + g ah = g(S _ S ) _ .S.(u-v) 
a t ox ax o f A 

(A-ll) 

For t he case of one-dimensional flow in a wide channel 
or over a plane surface , equation (A-ll) can be 
written: 

~ + u .2.:!!. + s :>,h -- scs s > .!I.e > - - u-v ot ax ax 0 f h 
(A - 12) 

Equations (A-5) and (A-12) are the one-dimensional 
unsteady spatially varied flow equations applicable 
to wide channels and overland flow planes. The 
assumptions made during their derivation are the 
fo llowing: 

(1) The flow is gradually varied so that vertical 
components of velocity and acceleration are 
negligib l e in comparison with the components 
along the direction of flow. 

( 2) The pressure on the vertical surfaces of the 
flow elemen t is hydrostatic . 

( 3) The energy and momentum coefficients, used as 
corrections to nonuniform velocity distributions, 
are equal to one . 

(4) The channel slope, S i s small and is approxi-
.o 

mately equal to sine = e. 

(5) Frictional resistance in unsteady flow is t he 
same as that for the corresponding depth in 
uniform flow so that the friction slope, Sf , 

can be obtained by either the Manning Of Chezy 
friction relations . 

Reference is made t o publications by Gilcrest 
(1950), Chow (1959) and Yevjevich (1961) for more 
extensive treatment of the spatially varied unsteady 
flow equations. 



APPENDIX B 

Derivat ion of Lax-Wendroff Scheme 

The dimensionless equation for kinema t ic flow is 

.Q.h + ShN-1 ~ • q ( B-1) 
ot ox 

where 6 • Nk/n 

This equation can be written in t he conservation 
form: 

Expanding h(x,t+6t) in a Taylors Series we 
obt a i n : 

(B-2) 

h(x ,t+at) - h(x,t) + Atah + At
2 ~ + O(at) 3 

ot 2 o t 2 

(B- 3) 

From equation (B- 2) 

(B- 4) 

and 

= - .a_[N 1 hN-1 ah]+ ~ 
ox n ot ot (B-5) 
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Subst ituting the expressi on for ~ given by 

equation (B-4) i nto equation (B- 5) 

::~ -:. t ! ,•-1 ( :. ~ ,0 -q l ] + ~ 
(B- 6) 

Therefore: 

h(x , t+At) • h(x, t) - At [2_ (1 hN) 
oX n 

_J 
J 

(B-7) 

Equa tion (B- 7) gives a second or der approximation 
for h(x , t+At) and is t he basis of the finite­
difference formulation shown in Table 3. 



APPENDIX C 

Stability Calculetions 

Stability is one of the properties of a di fference 
scheme that is required before convergence is guaran­
teed . In an unSt3ble scheme small numerical errors 
introduced in the computational method are amp l ified 
and eventually dominate the solution . Although the 
following method of s t ability analysis is not rigorous 
for nonlinear equations , it does serve to identify 
t hose difference schemes that are obvious ly unsuitable 
and it a lso determines appropria t e step lengths for 
conditionally stable schemes . 

In a linear stability ana l ysis we assume that 
instabilities first appear in a very small region of 
space so that if the coefficients of the derivatives 
are smooth functions they can be approximated as con­
stants in this region. Accordingly, we linearize 
equation (11) as shown in equation (C-1) where n 
is a constant . 

.2h 6h 
?t + 

Now at any point j • k 

N-1 

q 

the numerical solution 

(C-1) 

h~ 
J 

is equal to the true solution h(k6t, jOx) plus an 
-k 

error term hj 

h(kOt, jOx) (C - 2) 

where Ot is the time increment and Ox is the dis­
tance increment . 

Because we are dealing with a linear system, we 
can consider one term of the Fourie r Series express ion 
for the error term. 

(C-3) 

where H
0 

is a constant, o and y are wave numbers 

in space and time and i • ~ • It is assumed that 
the errors are perturbations added to the solution of 
the linear system. If we write the linearized finite­
difference equation in terms of the correct solution 
plus the error terms (equation (C-2)) and then sub­
tract the exact equation , we can obtain a differential 
equation in the error terms . This differential equa­
tion is then written in finite -difference form. In a 
stable scheme the ratio of successive error terms will 
be smaller than unity, e . g., 

s; 1 
(C-4) 

which establishes a stability criterion. 
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Lax-Wendroff Method 

The linearized Lax-Wendroff scheme in the error 
terms is 

k 
• h 

j 

k 
- 2h 

j 
(C- 5) 

where : a • Nkh 
n 

N-1 

If in equation (C-3) we let m n 0 for 
point j , k (which we can do with no loss in gener­
ality) we obtain the following 

hk .~ k+l 
Ho Gyllt~ j .. Ho ; hj exp 

k 
[icr~x J k 

[-iallx] hj+l .. H exp hj-l = H exp 
0 0 

Substituting these expressions into equa tion 
k 

(C- 5) and dividing by hj 

..- k+.l ...., k iyOt a6t [ icrO.: - icrO.>tJ h /h a e = l - --- e - e 
j j "LOx 

l(~t )2 [ icrOx _ -icroxJ 
+ 'i 6 xa e - " + e (C -6) 

with the appropriate trignometric substitutions 

eiyOt • L + ~(i sin crllx) + (0 ta)L (cos crOx - 1) 
~X Ox 

(C -7) 

For stability, the quantity eiyOt must lie 
within the unit circle on the compl ex plane . Now the 
real part of equation (C-7) is 



and the imaginary par~ is 

a~t sin oAx 
LlX 

Squaring the real and imaginary parts we obtain the 
criterion 

(C-8) 

where r = 9~t/Ax and e • cr~x 

Let us consider the most critical condition when the 
left-hand side of equation (C- 8) is evaluated at the 
following values of oAx 

oAx sin oAx cos o6x Criterion 

0 0 1 
1
1

1 
s; 1 

' 
I 

~~ l-{allt) 2 + (aAt) 4 I s; 1 n/2 1 0 1 
I Ax. llx 

1( 0 -1 : 1 1-4(~)2+ 4(a:>"l s; 1 

3n/2 -1 0 l l-(a~t) 2 + 
Ax 

(a~t)4 
Ax I s: 1 

From the analysis, it is clear that the criterion 
stated above is satisfied when 

(allt) 2 s; l 
~X 

a~t s; 1 
uX 

or n 

Nkh N-l 

Equation (C- 9) shows that the point k + 1 , j must 
lie within the zone of determinacy of the line from 
k , j - l to k , j + l . The Lax-Wendroff.scheme 

is linearly stable subject to condition (C-9) . 

Upstream differencing method 

When the upstream differencing method (Table 3) 
i s applied to the linearized equation with the error 
terms and the exact equations are subtracted we obtain: 

(C ·10) 

N-1 

where : a 
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After substituting the Fourier expressions for the 
error terms 

(C ·11) 

For the stability we require 

1
1- aAt(l- e·iollx) r· Ax s; 1 

or 11 - a~~(l - cos ;Jf:;x + i SJ.n oAx) I s: 
Squaring the real and imaginary parts, 

11 - 'La~~ G~~(l - cos ~!lx) + (1 - cos o~x)J I S: 

(C- i2) 

Upon simplifica t ion, inequality (C-12) becomes 

alit - .L±...Lr 
Ax 

s; 
2 

or 

M. ·S: n 
(C-13) Ax 2. 75Nk h N-l 

Brakensiek ' s four-point implicit method 

Us ing the same procedures outlined above, the 
stability criterion for the implicit method is: 

~ 1 

which can be put in the form 

l 
191 

cose e 
... 

1 I s: 

I 
; At 2 r , 

2 ax L1 + coseJ + 2(1-cose) 
(C- 14) 

where e = a At . 

The left-hand side of inequality (C-14) is always 
s; 1 so the ,scheme is unconditionally stable . 
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