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ABSTRACT 

W SS OF INFORMATION BY DISCRETIZATION 

A procedure is presented for quantitative evaluation of the loss of information when parameters of con­
tinuous stochastic processes are estimated on the basis of discrete sampled data. Three discretization pro­
cedures arc considered: 

(J) Discrete point sampling, where the process is sampled at periodic time intervals as a series of 
instantaneous values. 

(2) Average sampling, where the process is sampled as a series of average values. 

(3) Quantization of the variable, where its values are pooled into class intervals. 

The decision theoretical concept of "expected information loss", based on a linear loss function, is used 
as the measure of information content. 

For each discretization procedure general expressions for the expected information loss in estimating 
mean , variance and autocovariance are found as functions of the discretization interval, the length of the 
sampling period, and the mean, variance and autocovariance of the continuous process. For normal pro­
cesses the expected information loss is determined for estimation of probabilities of extremes, the mean 
number of runs, the mean run length and the mean run sum. 

A stream flow series is analyzed to show the applicability and potential of the approach. The loss due 
to quantization is found to be negligible in most practical cases. A small sampling interval is essential to 
prevent a large information loss about extremes and runs, but is of less importance for estimation of mean and 
variance. 

Average sampling introduces significant losses of information due to the biasing effect inherent in the 
sampling procedure. With the exception of the mean, a sample of instantaneous values contain more 
information about the parameters investigated than a sample of average values, taken over the same 
sampling interval. 
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PREFACE 

The majority of most important variables in water resources conservation , development and control .are 
hydrologic continuous random variables (any value in a given range occurs in nature), and their space and time 
series are usually continuous stochastic or periodic-stochastic processes. Because simple approaches have been 
developed in probability theory, mathematical statistics and stochastic processes for treating discrete variables 
and discrete processes, and because most calculations are oriented to the digital computer, a trend has devel­
oped to transform continuous random variables and series into discrete series of continuous variables or into 
discrete series of discrete variables. An example of this present trend is the development of optimization tech­
niques in water resources. A range of reservoir level or storage nuctuations between its two boundaries of 
empty and full reservoir is divided into ''states" , as layer states and boundary states, and considered as discrete 
random events. The continuous reservoir input or output time series and the time series of reservoir levels or 
storage volumes are basically treated as discrete series. There is bound to be a discrepancy between mathemati­
cal and computer expediencies of using the discrete instead of the conti.nuous approach and the true conditions, 
while conserving, controlling and developing water resources. Therefore, a loss of information and various un­
certainties are associated with this contemporaneous trend of discretization of hydrologic variables and series. 

In the research project on applications of stochastic processes in hydrology and water resources, 
sponsored by the U. S. National Science Foundation, Grant No. G K-31 5 12X, the problem of the loss of 
information by discretization is considered as a subject worthwhile of investigation, particularly in assessing 
how good the results of this discretization may be in comparison with the solution for the continuous case. 
This paper, as the Ph.D. thesis by Mogens Dyhr-Nielsen, represents an initial inquiry into the effects and con­
sequences of discretization, assumed to represent an additional uncertainty in planning and operating water 
resources projects. More research is deemed necessary in the future, particularly related to practical examples 
in current applications. 

An assessment is needed for the penalty which is paid as new uncertainties are generated by various calcu­
lations in water resources optimization, based on discretization of variables and series. For the penalty in the 
form of a loss of information , as this thesis demonstrates, the question also arises of which concept of informa­
tion should be used in hydrology and water resources. The particular question is whether an economic optimi­
zation of information procurement for each particular water resource project should be the basis of collecting 
hydrologic information, or whether another criteria should be developed because of yet unidentified future uses 
of collected long-range hydrologic data. Therefore, the study presented in this report should be viewed as a 
first attempt at throwing light on where the present trend of discretizations, and consequently, of procurement 
of hydrologic information and water resources optimization, may lead in the future. By introducing this paper, 
in the capacity of project principal investigator and advisor. it does not imply that all statements and 
approaches used in this paper are shared. The progress on the subject of this paper will be much faster under a 
diversity of concepts, approaches and attempts. 
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CHAPTER 1 

INTRODUCTION 

With an increasing interest in rational develop­
ment and management of water resources, the com­
plexity and sophistication of analytical tools to solve 
water related problems have increased accordingly. 
Such techniques as systems analysis, mathematical 
modeling, stochastic processes, and time series analy­
sis have been introduced in the different fields of 
hydrology in the last decade. often transferred from 
other sciences such as communication engineering. It 
has become evident, however, that the value of such 
modeling techniques may be limited in hydrologic 
applications because of insufficient data to identify 
the model parameters. Therefore, an efficient data 
collection system is of prime importnnce for success­
ful use of advanced mathematical techniques. This 
study treats one aspect of this data problem: the use 
of discretized data as the basis for stochastic model­
ing of continuous hydrologic variables and processes. 

1.1 Purpose of Study 

Most measurements of hydrologic phenomena 
may be considered to be continuous random variables 
occurring as continuous stochastic time series. Hence, 
both the marginal distribution f x (x) of a hydrologic 
variable X and its realization in time X(t) are basic­
ally continuous curves as shown in Fig. 1.1. 

Such series can be observed and analyzed conti· 
nuously by various analog methods. However, most 
techniques used for data collection and processing 
usually introduce discretization which destroys the 
continuous character of the actual series. 

X(t) 

X 

Fig. J. l Distribution and realization of a continuous 
stochastic process. 

The continuous random variable itself may be 
discretized by dividing its total range into class inter­
vals and considering, for example, the midpoint of 
each interval as representative for all the values in the 
interval. In this way, the continuous variable is trans­
formed to a discrete variable. Similarly, the continu­
ous time series may be observed at discrete, intermit­
tent times or transformed by averaging the actual pro-
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cess over a given time period, giving rise to a discon­
tinuous realization of the underlying process. 

Even though the sampling introduces discretiza­
tion, it is still possible to make inference about such 
properties of the continuous stochastic process as 
mean, variance, autocovariance and extremes. The 
ultimate aim of a discretization procedure would be 
to insure that the results obtained are statistically 
nearly equivalent to the results obtained based on the 
continuous sample. 

Although dis';retization is used almost exclu­
sively in analysis of hydrologic data, very few 
attempts have been made to evaluate ~he effect of 
such a transformation of the original continuous pro­
cess. By taking samples of water quality or sediment 
load once or twice a day, how much can actually be 
inferred about these processes, compared to a conti· 
nuous sampling? Does such sampling destroy impor­
tant information in the sample? Jt is obvious that the 
answer to these questions depends upon what one is 
looking for. If the property of interest is only the 
mean concentration of some pollutant, once-daily 
samples, taken over a long period might be sufficient. 
With increasing time of sampling, the error of the 
estimate will converge to zero. But if inference has to 
be made on extreme properties such as the number of 
times the concentration is above or below a certain 
standard, daily observations might be seriously inade­
quate. Such properties are governed by the very fast 
fluctuations in the process, and a too wide sampling 
spacing cannot detect them no matter how long the 
sample is. In such cases the proper choice of discreti­
zation is of utmost importance. 

Similarly , the practice of publishing data as 
daily, monthly or annual averages is sufficient for 
some purposes, whereas much information about for 
instance extreme values may be lost by averaging. 
This is not so serious if the averaging was performed 
under the data processing and if documentation of 
the continuous series still exists, but if the averaging 
is done through the sampling procedure, as in the case 
of a cumulative raingauge, the information is lost fo r­
ever. In general the introduction of discretization 
introduces a certain Joss of information about the 
continuous process, and it is the purpose of this in­
vestigation to develop tools to quantify this loss as a 
function of the discretization interval. 



1.2 Outline of Invest igations 

First, different possible quantitative measures 
of information content are investigated. Several defi­
nitions have been used in the literature. and their 
relevance for hydrologic studies are discussed. Based 
on this, the decision theoretical concept of informa­
tion content has been selected as most advantageous. 

Next, three of the most commonly used dis­
cretization procedures are presented: the discrete 
point sampling technique, where the process is ob­
served instantaneously at discrete time intervals: the 
average sampling technique, where the discretization 
is performed by averaging the process over a certain 
time period: and the quantization of the random vari­
able by pooling its values in a given interval into a 
common value. 

The loss of information in estimation of select­
ed stochastic properties has been determined as a 
function of the discretization interval fo r each of the 
three sampling techniques. One of the most funda­
mental characteristics of a proc~m is its marginal pro­
bability distribution func tion, and first the effect on 
estimation of this function is investigated. 

The first and second order moments, or the 
mean and variance, are the most important para­
meters of a process, and particularly for normal pro­
cesses these parameters describe uniquely the margin­
al distribution. Therefore, the loss of information is 
investigated on these two parameters. 

To describe the time dependence of a process, 
the basic property is described by the amoco­
variance -y(u). It is possible to postulate simplified 
mathematicaJ models for the autocovariance func­
tion, such as Markov models, frac tional noise models, 
or broken-line models, but these restrict the applic­
ability of results. It has been shown by Quimpo 
(1967) that, for instance, that the first and second 
order Markov models cannot be used for modeling of 
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daily streamflows. It has, therefore, been decided to 
presc:nt the results in terms of the autocovariance 
function itself without any model restrictions. Based 
on this, it is possible to obtain results for any model. 

Some properties of particular importance in 
hydrology and water resources are investigated. The 
probability t hat the tlood exceeds a certain 
stage u is a standard problem in hydrology, and it is 
evident that too large a sampling interval may miss 
some exceptional events. For this reason the effect of 
discretization on the est imation of this probability is 
investigated. 

Often, it is not only the instantaneous intensity 
of an extreme event that is of importance, but also its 
duration and total magnitude, expressed as the run-­
length L and the run-sum S of the exceedance. u u 
The design of a flood retention reservoir strongly 
depends on these random variables. Furthermore, the 
expected number Nu of occurrence of events ex­
ceeding a given level in a given sample or time period 
may be included in characterizing the excccdances. A 
complete description of these properties of a conti­
nuous stochastic process is still lacking. A rather 
general approximation to the exceedance probability 
for a stationary normal process has been developed 
by Ditlevsen (1971) and the expected numbers 
of Lu, Su and N u have been found by Cramer and 
Leadbetter ( 1967). This study is limited to the effect 
of discrete sampling on these four properties. Even 
though this does not give fu ll description of sampling 
effects on extreme properties, it does provide an indi­
cation of the importance of frequent sampling when 
such characteristics are of interest. 

Finally, a set of streamflow series is analyzed to 
demonstrate the procedure and the effect of discreti­
zation for particular cases. It should be poin ted out, 
however, that the procedure is general, and may be 
similarly applied to other hydrologic processes, such 
as water quality or rainfall. 



CHAPTER 2 

REVIEW OF LITERATURE 

The purpose of this literature review is twofold: 
frrst, to find a useful concept of information content 
to form the basis for the present study; second, to 
address the investigation more directly to the effect 
of discretization on estimation efficiency. 

The results of the search for a concept of in­
formation are presented in detail in Chapter 3. Here, 
it is sufficient to mention the tlrrec major concepts: 

(I) R. A. Fisher's information concept was first 
presented in his two papers (Fisher. 1921, 1925) and 
later in a more descriptive version (Fisher, 1966). 
Fisher's concept was developed directly for use in 
statistical estimation theory which is also the object 
of this srudy. 

(2) C. E. Shannon's information concept 
(Shannon 1948) actually was developed from Hartley 
(1928), but since it was Shannon who showed its 
usefulness in the theory of communications it is usu­
ally credited to him. Numerous texts in communica­
tion theory have introductory presentations of 
Shannon's information concept. The clearest one for 
readers outside the field of communication theory 
may be McMullen (J 968). Shannon studied the infor­
mation in transmitted messages in a communication 
system; however, it was also shown (McMillan, 1953, 
Khinchin, 1957, Kullback, 1959) that the concept is 
useful in statistical applications. 

(3) The decision theoretical concept of inform­
ation is based on the work of Savage ( 1950) and 
introduced by Raiffa and Schlaifer (1961 ). A less 
mathematically oriented introduction to this concept 
may be found in Raiffa (1968) or Benjamin and 
Cornell (1 970). The general scope of decision theory 
is so broad that the estimation problem may be con­
sidered a special case of application. A presentation 
more specifically oriented toward mathematical sta­
tistics is given by DeGroot (1970). It should further 
be mentioned that Davis (1971) has studied the appli· 
cability of decision theory in hydrology in grllat 
detail, including a thorough literature review. 

The second part of the literature review relates 
to hydrologic studies which consider the information 
loss by sampling. Although there exists a substantial 
number of papers studying the spatial sampling pro­
blem as a basis for data network planning. relatively 
few studies consider the effect of the in-station 
sampling in time, and of those available, most arc 
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more concerned about how long a time to sample 
instead of how often. 

Matalas and Langbein ( 1962) studied Fisher's 
information content in the mean for stochastic sedes 
satisfying the first-order Markov model. They defined 
-as a measure of information the effective number or 
observations, i.e., the number of observations of an 
independent process that contains the same informa­
tion as the dependent process, and they found that 
the information content in a dependent series is 
smaller than the content in an independent series of 
the same length and with same variance. 

This concept was used for the mean of a 
second-order Markov model by Reiher and Huzzen 
( 1967) and Quimpo ( 1969). Y evjevich (I 972) pre­
sents the effective number of years for estimating the 
variance of a first-order Markov model. Common for 
these studies is the assumption of a Markov model, 
which makes the results less applicable to closely 
sampled data when this assumption does not always 
hold. 

A more direct attempt to study the loss due to 
increased sampling interval was presented by Knisel 
and Y evjevich (1967). They studied series of average 
values such as daily, weekly, monthly, and annual 
flows and anaJyzed independent residual series, where 
both the deterministic component and the dependen­
cy in the stochastic component were removed. They 
concluded that the variance of the estimate of the 
mean increases with an increase in the averaging inter­
val; however, this conclusion is misleading. When the 
mean is estimated it should make no difference 
whether the sampling average is estimated based on 
daily average, monthly average. or annual average 
values; the estimate will always be the same, and, 
therefore, its sampling variance should be inde­
pendent or the sampling interval. The conclusion 
above is a result of the removal of the dependent 
component, and this removal is not permissible 
because the information content in the total series 
must be considered to include both the dependent 
and the independent component. If this is done, tlle 
information content does not vary with the samplillg 
interval. 

A paper by Quimpo and Yang (1970) addresses 
the same problem as this dissertation, the proper 



choice of the sampling interval. Based on their results, 
the conclusion can be drawn that the information 
content increases with the increased sampling inter· 
val, a somewhat staggering result. The reason is that 
their concept of information content was developed 
based on discrete point sampling, whereas the data 
analysis was based on average value sampling in form 
of daily, 2-day, 3-day, etc. gloed, thereby changing 
the characteristics of the underlying process. Strictly 
speaking, the optimal sampling interval according to 
Quimpo's paper would be infinite, i.e., one should 
never sample. 

A different approach to the sampling problem 
was proposed by Eagleson and Shack ( J 966) based on 
concepts used in spectral analysis. They proposed to 
choose a sampling frequency large enough to include 
"most of the spectrum" and to use as a criterion for 
the sampling frequency that the spectral density at 
the cutoff frequency is only 5 percent of the density 
in the origin. This approach attempts to obtain 
"all" the information and does not consider the 
problem losses when the sampling interval increases. 

The papers mentioned above are the only 
hydrology oriented studies of the problem that has 
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been found. Some interesting work on discrete sam­
pling has been done in queueing theory by Riordan 
(1951) and Benes (1961) in relation to the measure­
ment of traffic loads in telephone systems. However, 
the processes they considered are different from 
those usually encountered in hydrologic time series. 
Because the problem of time series sampling is equiva­
lent to the non-random sampling problem, an 
abundance of references could be found in the statis­
tical literature. However, it is more practical to refer 
to these when they are actually used in the following 
text. Here only the work of Tick and Shaman (1966) 
is mentioned, which illustrates the effect of discrete 
sampling on the estimation of crossing properties. 
They show that a sufficiently frequent sampling is 
essential for the preservation of such properties as the 
expected number of crossings of a given level, the 
number of maxima in a given time period, etc. This 
work plus the works of Cramer and Leadbetter 
(1967) and Ditlevsen (1971) have pointed out the 
importance of the high-frequency terms in the 
spectrum when extreme and crossing properties are of 
interest and hence the importance of a sufficiently 
close sampling in such cases. 



CHAPTER 3 

CONCEPTS OF INFORMATION CONTENT 

The word information is frequently found in 
hydrologic literature. Generally speaking all research 
in hydrology is aimed at increasing information about 
hydrologic phenomena, even though one seldom finds 
attempts to define this increase in quantifiable terms. 

Before talking about information it is impor­
tant to emphasize that this word can have different, 
although related meanings. The dictionary defines 
information in two ways: 

(l) The act of informing or communication of 
knowledge. 

(2) Knowledge derived from study or know­
ledge about a specific situation. 

The first definition is of importance for 
problems concerning transmission of knowledge or 
messages such as in electrical communication theory. 
The latter seems more relevant for studies of know­
ledge of messages at hand; this problem is represented 
in statistical inference, where knowledge about sto­
chastic properties has to be inferred from samples. 
However, the advantage of using a particular defini· 
tion, when it comes to applications, is not so clear, 
and both definitions have actually been applied in 
statistical inference. 

There is a close relation between the concept of 
information and the concept of uncertainty. Avail­
ability of information should, hop;lfully, reduce un­
certainties, and one might, therefore, define informa· 
lion as the decrease in uncertainty about a parameter 
that has taken place after the information has been 
obtained, for example, by sampling of a stochastic 
process. As increase of information is associated with 
decrease of uncertainty, the l wo concepts are comple­
mentary, and the amount of uncertainty in an csti· 
mate of a parameter should be inversely proportional 
to the amount of information defined as knowledge 
about the parameter. 

The information under consideration in this 
study is that contained in a sample estimate of a 
particular parameter of the continuous process such 
as mean, variance or ext rcmc properties. Sample esti­
mates will always be subject to some uncertainty, 
even if the estimate is based on a continuous sample, 
and this gives an upper limit to the amount of in­
fo rmation about the parameter that can be ob-
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tained.lf the estimation is based on a discrete sample, 
the behavior of the process between the sampled 
values is unknown, and an additional uncertainty is 
introduced relative to the continuous sample. It is 
this additional loss of information that is of principal 
interest in this study. 

When there can be some dichotomy in talking 
about information qualitatively, the arbitrariness 
increases in trying to define a quantitative measure of 
information content. In general, any monotonic fun· 
ction that maps a high information into a high 
numerical value is a candidate as a measure of 
information. In any particular situation, the selection 
of appropriate definitions depends on the usc of the 
information that is to be extracted from the data. 

Three different concepts of information 
content are presented: Fisher's information content, 
Shannon's info rmation content and a concept about 
expected information loss that has been developed in 
statistical decision theory. All three may be used as 
objective measures of information, but the decision 
theoretical approach has the advantage that it in· 
eludes the effect of a biased estimator on the 
information content; and it provides a basis for 
economic assessment of the value of information. The 
latter becomes particularly important in practice 
where a tradeoff between the cost of lost information 
and the cost of sampling and processing the data is 
necessary in order to determine the optimal sampling 
rate. Although it is not the intent of this investigation 
to address directly the problem of selection of an 
optimal sampling rate, it is important to use an 
information concept that can be applied in such 
cases. Therefore, the decision theoretical concept of 
information loss will be selected for use throughout 
this study as a measure of information. 

3.1 Fisher 's Information Content 

About 50 years ago R. A. Fisher (1921, 1925) 
presented the first major attack on the problem of 
extracting the maximum amount of information out 
of a given set of data. He defines a high amount of 
information as a large amount of knowledge about a 
particular parameter, that has to be estimated based 
on the sample. 



Fisher's information content in n independent 
observation of the random variable X about a 
population parameter a is defined by (Rao, 1965), 

a In fx(x;a) 2 

If= n If x (x;a) [----o-a- 1 dx, (3.1) 

where fx (x;a) is the probability density function 
of X. Equation 3 .l is an expression for the maximum 
amount of information that is contained in the 
sample. If the n observations are ·combined into a 
statistic & to be used as an estimate of &, it can be 
shown that the information in a is smaller than or 
equal to If of Eq. 3.1. If it is equal, a is called an 
efficient estimate. 

In general, the estimate & is not efficient, and 
in such cases a loss of information about a occurs by 
replacing the original sample by a. The information 
in an inefficient estimate ci can be found by con· 
sidering Q as a single observation taken from the 
sample distribution fA (&;a) of & ,(Fisher, 1966): 

31n fA (5 :a) 2 

Ir(&) = If A (a:a) [- 3-a - 1 do (3.2) 

The distribution of & varies with both the esti­
mator itself and the sample size. For large samples, 
however, many estimates have an approximate 
normal distribution, specified by the mean p. and the 
variance V of & only (Cramer, 195 I). 

If the estimate is unbiased, p. = a, and if it 
has a bias B, Jl = a + B. In general for large 
samples 

... 1 (a . <a + s) )2 

fA (a) "" r- exp I · 2 y I . (3.3) 
v21rV 

This distribution has the first two moments 
exact even for small samples, but the shape is an 
approximation only. 

Combining Eqs. 3.2 and 3.3 it is easily shown 
that Fisher's information content becomes 

38 2 

(I+ aa) (3.4) 
1r = --v.----
Equation 3.4 clearly shows the relation 

between information and uncertainty. A large sample 
variance of the estimate & is associated with a small 
information content. The bias of the estimator enters 
the equation as the derivative with respect to a. This 
implies that if for example the biars is proportional 
to a, If is independent of the absolute magnitude 
of B. In general, however, an estimate with a large 
bias should be expected to contain less information 
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than one with small bias, given the sample variances 
are equal. Thiis will not be the case in the example 
above, and this is a drawback for this particular 
measure of information content. 

Actually, Fisher never used his concept to 
study biased estimates. He stated explicitly (Fisher, 
1925): "-knowledge of the exact form of the distribu­
tion of & will enable us to eliminate any disadvan­
tages from which a statistic might seem to suffer by 
reason of bias." 

In short, he does not consider the bias an 
inaccuracy, because, if known , it can be compensated 
for exactly. If the bias is assumed to be zero, Fisher's 
information content reduces to the well known equa­
tion 

I 
1r=v (3.5) 

This expression has been used in hydrology by 
Matalas and Langbein (1962) and Knisel and 
Yevjevich (1967). If the bias of a given estimate is 
estimated in advance, a new unbiased estimate can be 
formed by subtracting this bias. For this new esti­
mate, the information content may be expressed as a 
function of V2 only, and Eq. 3.5 can be used. How­
ever, in this study it has been found more advanta­
geous to consider the information as a function of 
both bias and variance of the estimate. 

Based on its similarity to Eq. 3.5, the following 
expression may be proposed as a measure of informa­
tion in the estimate &: 

(3.6) 

where mse(&) is the mean square error of a. 
As mse(&) = V + B2

, this concept takes into ac­
count the influence of both bias and variance on the 
information content. It should be noted, however, 
that this concept is a somewhat subjective choice, and 
it is not directly related to Fisher's concept. 

A major disadvantage in using If or Im se as 
measures of information is, that they are not easily 
related to the value of information, as expressed in 
monetary terms. From a practical point of view this is 
of significance because it is the value of the informa­
tion that ultimately is of interest, when a decision 
about a given discretization level has to be made. 



3.2 Shannon's Information Concept 

Although the information concept discussed 
here is mostly associated with Shannon (1948), it 
actually is almost as old as Fisher's concept and was 
introduced in 1928 by Hartley (1928). 

The word information, in this theory, is used in 
a sense that should not be confused with the concept 
Fisher used. Where Fisher associated a high amount 
of information with a high amount of knowledge or 
accuracy. Shannon associntes high information with a 
high amount of uncertainty. The reason for this is 
that the fundamental problem of communication 
t11eory is that of reproducing at one point either 
exactly or approximately a message selected at 
another point from a set of possible messages. The 
word message should here be understood in general 
terms. including not only written or spoken state· 
ments but also a statistic computed from a sample. In 
this context, a transferred message that is certain does 
not contain any information. as it did not increase 
our knowledge. On the other hand. the transfer of a 
very unlikely message carries a large amount of in for· 
mation. ln this way, the informa tion content is 
related to the measure of uncertainties or the prob· 
abilities of the messages. Hartley proposed somewhat 
subjectively that the natural choice of measure of 
information content in a message is a logarithmic 
function of its probability. Shannon states that it is 
ncar to our intuitive feelings as to the proper mea· 
sure. as it satisfies the properties mentioned above, 
and it is additive for independent nll;ssages. The main 
support for its usefulness comes. however. from its 
mathematical simplicity and from some important 
theorems, that has been developed about the capacity 
of transmission channels. Furthermore. its rnathe· 
rnatical equivalence to the concept of entropy in 
stat istica I mechanics and thermodynamics seems 
appealing. 

If one considers the information not in a single 
message, but in the information source that produces 
the messages, it is natural to define the information 
content in this source as the expected information in 
a message. 

I,=· E[Qn P l~l I (3.7) 

n 
=· r P[a.J QnP[S..J 

i=l I I ' (3.8) 

a discrete and 
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(3.9) 

for & continuous where fA (a) is the density func· 
tion of the messages. The minus sign is added to 
make Is posit ive. This is the definition of Shannon's 
information content, or. as it is called also, due to its 
mathematical similarity with the physical concept of 
entropy, the entropy of the information source. 

ln this study the sampled part of a stochastic 
process is considered as an information source that 
transmits uncertain messages in the form of esti· 
mates a of the parameter a. The Shannon informa· 
tion content in the sample is then determined by Eq. 
3.9, where fA(&) is the sampling distribution of &. 

If, like above, it is assumed that the statis· 
tic a is distributed approximately normal with 
mean, a+B and variance V, where B is the bias, 
then 

1 (a. (a-+s N 
I = · E[ln [- · - exp C · --1v---)J] 
s .J2i(V 

1 1 (a - ~a+B))2 
=. E[ln .,fin -2 1n a2 ·v 1 

1 I I V 
=- In . n=- + "1 In V -2 V 

y21i 

1 = k +zln v 

(3. 1 0) 

(3.1 l) 

(3.12) 

(3.1 3) 

Equation 3.13 shows that in general Shannon's 
information concept does only include the effect of 
sampling variance on the information content, and 
that the effect of bias is not accounted for. This is a 
serious disadvantage, because in some cases, such as in 
estimating probabilities of extremes based on djscrete 
sampled data, the bias is a major contributor to the 
uncertainty about the population value. In such cases, 
it is important that the bias enters as a factor in the 
definition of information content. 

Although the concept of entropy has been used 
in many applicat ions in communications theory, in 
economics (Theil 1967), and in mathematical stat is· 
tics (Kullback, 1959), it has been concluded that it is 
not the most advantageous approach in this study. It 
does not account for information Joss due to bias. 
and, similar to Fisher's concept, it is not related to 
the value of the information. This is clearly stated in 
the beginning of Shannon's paper. as this aspect is 



considered irrelevant to the communication engineer­
ing problems. However, in hydrologic practice, know­
ledge of the value of the information is essential in 
order to evaluate if it is economically feasible to 
analyze a process with a given discretization, and it 
has, therefore, been necessary to search for an info r­
mation concept that takes this into account. 

3.3 Expected Infonnation Loss 

Statistical decision theory has been developed 
as a tool for making decisions about actions to be 
taken when the state of the world is uncertain, but 
when further information about it may be obtained 
by experimentation. The objective of a decision 
theoretical analysis is to identify a course of action 
(which may or may not include experimentation) 
that is consistent with the decisionmaker's own pre­
ferences for consequences, as expressed by a numeri­
cal loss function and with the weights he attaches to 
the possible states of the world, as expressed by 
numerical probabilities (Raiffa and Schlaifer 1961 ). It 
is not a rigid theory, but rather a general framework 
to advance evaluation of the consequences of given 
actions. It is build on two main foundations, namely, 
that the consequence of all possible actions for all 
possible outcomes can be specified through a loss 
function, and that the probability distribution of all 
possible states is known. 

Here the concept is used to evaluate the effect 
of different discretization intervals on the estimation 
of a given population parameter a. Due to sampling 
variation, the estimate, ~. will generally be different 
from the true value, a, and when il: is used as if it 
actually is the population value, a certain loss will 
occur. This loss might be expressed in monetary 
values, for example, as the losses that occur in a water 
supply system due to a wrong estimate of the average 
supply ; here a simple linear loss function is used 

I(&)= k!Q -al (3.14) 

so that the loss is directly proportional to the devia­
tion of & from its true value, a. It might be con­
sidered the first term in a Taylor expansion of the 
actual loss function. An inclusion of higher order 
terms would not increase the mathematical diff­
iculties to any great extent, but it has not been 
judged necessary to do so here. 

It is not known in advance what value a will 
have, as it is a random variable with stochastic pro-
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perties determined by both the basic population from 
which the sample is taken and by the discretization 
performed in the sampling procedure. However, if 
this distribution is found, the expected information 
loss is defined as the expected value of the loss func­
tion : 

(3.15) 

By sampling a given stochastic process with 
sampling intervals .llt and Ax, Eq. 3.15 gives a 
measure of the loss of information about a that 
occur due to this particular discretization. 

This concept will account for the effects of 
both bias and variance of the estimate. Furthermore, 
it may assess the value of information and form the 
basis for an optimization of the discretization inter­
val, if a realistic loss function can be developed. The 
optimal sampling interval should then minimize the 
sum of the expected loss and the cost of data collec­
tion and processing. 

To find the expected loss of Eq. 3.15, the 
distribution of the estimate r2 must be developed as 
a function of the discretization interval. This problem 
may be solved in three ways: by an exact mathemati­
cal solution in closed form, by an empirical solution 
using the Monte Carlo method, or by an approxima­
tion to the exact solution. For most parameters under 
consideration, the first alternative seems impossible ; 
the second will probably give solutions close to the 
exact; however, a severe disadvantage is that for 
practical reasons the number of cases that may be 
considered is limited. 

The last alternative should give the mean and 
the variance of the sample estimate and assume that 
the sampling distribution may be approximated by a 
normal distribution, specified by this mean and vari­
ance. This assumption is satisfied for large samples 
(Cramer, 1951). Furthermore, as the distribution of 
the estimate js only used to develop the expectation 
of the loss function, too much sophistication in the 
derivation of the sampling distribution seems un­
necessary. Because it is possible to express the mean 
and the variance of an estimate as a function 
of .llt under very general assumptions about the pro­
cess, the latter approach is selected for this study. 

Given the bias B(.llt) and variance V(At) of 
the estimate a of et for sampling interval At, the 



computation of the expected information 
loss l(&,totO is straight forward , Fig. 3.1: 

l (<l,a) 

~(a)- N(a+B,V) 

a a 
Fig. 3. 1 Computation of ](&,tot). 

I<& :tot,tox)=E(k Ia -all 
-B I x 

= k {f - (x+B) 1\T <P ( r.;) dx 
.oo vv vV 

"" ] X 
+ f (x+B) "' ¢> ( r.;) dx } 

-u vV vV 

where <P(u) is the density function of the stand­
ardized normal distribution. The single terms give 

-B I x -B t fi 
· k f X r.; ifJ ( ;.;) dx = · k vfv J" U¢( u) du 

-oo vV vV ·"' 

8 
= k ft<P <- > vv 

-H I x ·Btfi 
-kBLvv<l>\!v)dx = -kB J ¢(u)du 

B B 
= - k 13 'I' (-ft = k B (<I> (VV) - I ) 
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where ci>(u) is the standardized normal distribution 
function. 

"" j X oo 

k f x IV <P ( IV) dx = k ..jV f r.:- u<t>(u) du 
-u vV yv ·B/vV 

= k vv <~> c....!!..J w 
"" I X 

kB J - <P(-) dx = 
-BVV 'y'V 

B 
= kB <I>(-) 

'.JV 
so that 

kB j </>(u) du 
· BJJV 

I (6 :tot ,tox) = k L~ / B( tot ,tox) 'P JB(tot,tox) ) 
V(tot,t.x) 

(3.16) 
B( tot ,t:.x ) 

+ y'v(LSt ,tox) 1> (-J ( ] · B(tot,tox) } v tot,t.x) 

When B and V are found as functions of tot, the 
expected information Joss can easily be found from 
standard tables of <f>(u) and cl>(u). 

This approach establishes the measure of 
information content used in this study. The extension 
to more complicated loss functions is easy. If these 
are expressed as higher order polynominals, the 
expected uncertainty loss can still be expressed in 
terms of <f>(u) and <I>(u). If not, numerical integra­
tion may be necessary. 



CHAPTER 4 

SAMPLING PROCEDURES 

The purpose of sampling a stochastic process is 
to enable an inference about the population from 
which the samples are generated, and then predicting 
of behavior of future realizations of tltis process. 
Intuitively, it seems that the only way to obtain "all" 
information contained in a realization of a continu­
ous process is to perform a continuous recording. 
However, it seems just as obvious that if a continuous 
process is sampled sufficiently closely, "most" of the 
relevant information should be present in the discrete 
sample by obtaining a close approximation by 
straight line interpolation between the observations. 

Some complexities and cost in recording and 
processing continuous data have prevented continu­
ous sampling and processing techniques from being 
currently used, in particular in hydroiOf.•C data 
collecting. Even when the data are collected continu­
ously, as is the case with some stream flow gaging, the 
original recordings are not easily accessible. Finally, 
the wide-spread use of digital computers instead of 
analog computers has made direct use of continuous 
data impractical. 

The traditional presentation of hydrologic data 
as discrete series made it feasible to apply stochastic 
techniques which have been developed for discrete 
series, neglecting the fact that the underlying process 
is actually continuous. However, when the sampling is 
discrete both in time and for the variable, it is still 
possible to make some statistical inferences about the 
underlying continuous process. With tools for genera­
tion of continuous processes becoming more and 
more available (Mejia, 1971) it is a logical approach 
to analyze hydrologic time series as continuous 
stochastic processes. 

A brief review of three common sampling and 
processing techniques is given below with an assess­
ment of implications the use of these techniques have 
upon the inference about a continuous process. 

4.1 Discrete Point Sampling 

If a continuous process is observed only as 
instantaneous values at discrete points in a time 
period T s, tltis is referred to as the discrete point 
sampling, Fig. 4.1. It is the classical nonrandom 
sampling scheme, and it has been extensively treated 
in the literature. 
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Fig. 4. I Discrete point sampling scheme. 

Sampling of this type is used in monitoring 
water quality variables, where water samples are 
collected at certain times of the day and analyzed for 
sediment and mineral content. Another example is 
once-a-day observations of water levels in rivers or 
ground water aquifers, a gaging procedure that still is 
widely used outside the U.S.A. Although wind and 
temperature data may be measured continuou;;ly, the 
instruments usually are read only at discrete time 
intervals, and therefore these data falls into this cate· 
gory. Many other examples are easily found in hydro­
logic data collections. 

Finally, the use of digital computers in the data 
processing phase has led to the introduction of dis­
crete sampling of series such as stream flow stages 
that previously were sampled continuously. -

In general, discrete sampling of continuous pro­
cesses may have the time distance between observa­
tions either constant or random. Although random 
sampling may be considered, it is rather unfeasible 
when one is interested in estimating the correlation 
structure as a function of time lags. Hence, only 
sampling with regular intervals is considered, by 
further assuming that the sampling is extended uni­
formly over the total sampling period, T . Through-s 
out the study, Ts is considered constant. 

In certain cases, in which economic or other 
constraints limit the number of observations to be 
taken, it might be profitable to sample only part ·Of 
the period T

5 
with smaller intervals between 

sampUng points in order to get a better estimate of 
the high frequency properties of the process. This 
problem has been studied by Jones ( 1962) and Parzen 
(1963), but is not considered here. 

Only the loss of information by uniform dis­
crete sampling over the complete time interval T is 
investigated. This problem was studied early in \he 
century in the fields of electrical engineering and 



communication theory. The practical advantages of 
transmitting continuous signals as discrete impulses 
raised the question of how much this procedure dis­
torted the received message. Nyquis.t (1924) showed 
that for a very wide class of stocltastic processes a 
sufficiently close discrete sampling will preserve all 
the information, and that it is possible to recover the 
original continuous trace from the discrete sample. 
This result is presented in the following version of the 
famous sampling theorem: "The spectrum of a fre­
quency Limited signal, which has no spectral com­
ponents above the frequency fc, is uniquely deter­
mined by its samples taken at uniform intervals less 
than 6tc = I/2fc apart." 

The proof of this theorem can be made by con­
sidering a convolution between the original continu­
ous signal fc(t) and a periodic unit impulse func­
tion o(t) with frequency, f

5 
= l /6t (Laht i, 1968). 

In the time domain, this operation will result in the 
discrete sampled process, f/t). Fig. 4.2. It can be 
seen that this operation produces a periodic copy of 
the original spectrum if f > 2f . If, however, s c 
fs < 2fc the tails of the sampled spectrum will 
overlap, and the resulting spectrum is distorted. 

To recover the original spectrum from the dis­
cretized series one should neglect everything outside 
the frequency interval -f < f < f or, mathemati-c c 
cally speaking, filter the sampled spectrum by unit 
height in the interval ·1 /26t < f < I /26t and c c 
zero outside. If a similar operation is performed on 
the discrete series in the time domain, the original 
continuous series will be recovered, as there is a one 
to one correspondence between the signal and its 
Fourier transform. It should be noted here that, in 
general, the original series is not recovered by inter­
polating straight Jines between U1e sampled points. It 
has been shown by Tick and Shaman (1966) that if 
only this is done, the appearance of the recovered 
process in terms of run properties such as number of 
crossings will be distorted, even if one samples with a 
frequency twice the limiting frequency f . However, 

c 
for spectra usually encountered in hydrology, where 
the spectral density decreases with an increase of fre­
quency, this distortion is relatively small. Further­
more, it is important to emphasize that even if the 
reconstruction of the original signal is incomplete due 
to the approximate linear interpolation, no distortion 
is present in the spectrum. Therefore, the inference 
based on the spectrum of the discrete sampled pro­
cess will be identical to inference based on the con­
tinuous sampled process, if the sampling frequency is 
above the critical value 2fc. In this sense, the dis-
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cretized process is exactly equivalent to the continu­
ous process. Therefore, in this study where the 
characteristics to be studied are functions of the 
spectrum, one need only to measure the loss of 
information relative to a sufficiently dense sampled 
process instead of the original continuous signal. This 
allows for some simplification in the analysis, as only 
discrete processes are to be studied. 

A critical point in the sampling theorem is the 
assumption of a frequency limited signal. It can be 
shown that a finite signal can never be frequency­
limited, so no realizable signal can satisfy this 
assumption exactly. However, experience has shown 
that most realizations of hydrologic time series can be 
considered approximately frequency-limited, so that 
components with frequencies above a certain value 
can be neglected without introduction of any signifi­
cant error. Spectral densities of instantaneous rainfall 
intensities show a fast decrease with increased fre­
quency (Eagleson and Shack, 1966), and this will be 
even more pronounced for stream flow records that 
are the filtered output of the rainfall input into the 
catchment system. In general, the catchment will 
filter out the highest frequencies in the rainfall 
spectrum and produce an even closer approximation 
to the frequency-limited case. Therefore, it is 
assumed that a sampling frequency of twice the 
largest significant frequency will satisfy the condi· 
tions of the sampling theorem, with an acceptable 
error, and, therefore, be equivalent to the continuous 
sample. 

If the sampling frequency is smaller than the 
critical frequency, three things will change the 
information that was contained in the complete 
sample and give rise to an information loss: 

( I ) Increase of the sampling interval wilJ 
usually decrease the autocovariance between the 
observations, making them more independent. This 
tends to increase the information in the sample. 

(2) Red!uction of the number of sampled 
points in the time period T tends to decrease the 
information content. 

(3) The high frequency components in the 
sample will not be detected if the sampling interval is 
too wide. This may give rise to bias in certain esti­
mates, decreasing the information content. 

The loss of information is due to the joint 
effect of these three factors. It should be noted 
that if I) dominates 2) and if 3) is negligible, the 
information content in the discretized sample may 
be greater than in the continuous sample. In such 
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Fig. 4.2 Effect of pond sampling on the spectrum of the process. 

cases discrete sampling is actually superior to con­
tinuous sampling. 

4.2 Average Sampling 
While the previous section was concerned with 

discrete observations of instantaneous values of a pro­
cess, the focus is now on another common technique 
of sampling, namely time-average or integrated 
sampling. Here the sampling is performed over a 
certain time int erval ~t and the result is the integral 
of the process over the interval, ordinarily presented 
as an average intensity in the time interval ~t. Fig. 
4.3. 

Averaging sampling devices are frequently used 
in hydrology, for example, for the measurement of 
precipitation and evaporation. The bucket rain gauge 
that is empt ied at fixed t imes every day is probably 
one of the most used rain gauging techniques in the 

12 

world , and the evaporation pan is by far the most 
used evaporation gauge. 

Similarly, samples that were obtained con tin u­
ously are often integrated in the data processing pro­
cedure and are presented as hourly, daily, monthly, 
annual total O·r average values. If these data are used 
uncritically as a representation for the continuous 
process, some important properties may be changed. 

X(1) 

0 [11 T, 

Fig. 4.3 Average sampling scheme. 



It is obvious from Fig. 4.3 that average X( t) 

sampling may seriously degrade the characteristics of 
the original continuous sample. The variability in the 
sample is attenuated by the smoothing effect of 
averaging, so that the magnitude of extreme events 
will be reduced. Actually, the average sampling, with 
a sampling interval Llt, corresponds to discrete 
point samplJng with interval Llt of a process formed 
by smoothing the original process. So, in addition to 
the information loss due to discrete point sampling as Y(t) 

demonstrated above, one may introduce an additional 
uncertainty due to the distortion of the basic process. 

Tltis attenuation is easily demonstrated by 
comparing the original continuous process X(t) and 
a derived continuous process Y(t) formed by a 
moving average process of X(t) over the interval Llt. 

} t +Al/2 
Y(t) ='ZIT" f X(t) dt (4.1) 

t·At /2 

If Y(t) is sampled at discrete intervals Llt, a discrete 
series Ai is obtained, and it is easily seen from Fig. 
4.4 that Ai is equivalent to an average sampled reali· 
zation of X(t) over Llt. The Joss of information in 
going from Y(t) to A. can be treated as a discrete 

I 

sampling of the attenuated process, Y(t). The addi· 
tiona! loss due to the attenuation by trans· 
forming X(t) to Y(t) can be analyzed by evaluating 
the bias of the properties of Y(t) in relation to the 
true properties of X(t). Since bias is. an additive pro· 
perty, there is no difficulty in combining the effects 
of the two steps. 

It is difficult to tell in advance which of the 
two methods, point or average sampling, is associated 
with the least loss of information for a given sampling 
interval. For a property such as the mean, which is 
not distorted by the average procedure, the average 
sampling is obviously the best as it actually incorpo­
rates the total information in the continuous trace. 
But for more frequency sensitive properties such as 
crossings of a given level, the attenuation due to 
averaging may be so critical that point sampling 
should be preferred. 

It is clear that when the sampling interval 
approaches the critical frequency f, the two c 
approaches are almost equivalent, so that , for 
example, the daily instantaneous sampling might be 
approximated with daily average values if the attenu· 
ation due to averaging is negligible. This will, how­
ever, seldom be the case with monthly or annual 
values, and often even daily values will be a gross 
approximation. 
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Fig. 4.4 lllustration of the effect of integrated 
sampling in the form of an attenuation 
of the original continuous process. 

4.3 Quantization 

The two previous subsections considered dis­
creti:lation along the time axis of a continuous pro· 
cess. A similar discretizat ion can be performed on the 
random variable itself, or along the axis of the 
random values. If all values in a given interval, Llx of 
the X-axis are considered equal to one value, say the 
midpoint of the interval, and the whole X-axis is 
partitioned into such intervals, the procedure repre­
sents the quantizing of a random variable, Fig. 4.5. 

X(t) 

Fig. 4.5 Quantization of a random variable. 



The most common reason for quantization is 
the presence of errors in observations, instruments or 
errors introduced by the data processing. The limited 
accuracy automatically approximates the continuous 
variable by a discrete variable defined down to the 
last reliable digit, and the size of the measurement 
error defmes the interval Ax. Usually this error is 
small compared to the total range of variation of the 
random variable, and the error introduced by such 
quantization may not be significant. 

Another common use of quantization is 
applied in computation of sample frequencies or 
histograms. The random variable is ,grouped into class 
intervals, and relative frequencies are associated with 
the central value of the class interval. 

In recent years, the concepts of systems 
engineering have been applied extensively in the ana· 
lysis of water resources problems. A fundamental pro­
perty of many of these techniques is the grouping of 
the variables values into discrete states. Due to limita­
tions in computer storage, it is often necessary to 
limit the number of states an actual continuous vari­
able may assume, and this may give rise to a rather 
coarse quantization (Hall and Dracup, 1970). Simi­
larly, the in traduction of discrete Markov chains 
(Moran, 1959) to model stochastic processes such as 
reservoir levels introduces quantization. 

In this study, the effect of quantization on the 
estimation of stochastic properties is emphasized. It 
has been shown (Widrow, 1956) that the quantization 
can be considered as a nonlinear operator having the 
input-output relationship shown in Fig. 4.6. 
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Output Xq(t) 

Fig. 4.6 Effect of quantization. 

Based on this, it is shown that introduction of 
quantization corresponds mathematically to addition 
of a quantization noise nq to the original signal, i.e. 

X =X+n 
q q (4.2) 

where X is the quantized random variable. n has q q 
been found to be uniformly distributed over the 
interval 

X · Ax/'1 < n < X + Ax/2 q q q (4.3) 

and it introduces a bias in the estimation of the vari­
ance. It will be shown, however, that this bias is small 
for even very coarse quantization, and that the 
dominating loss of information is introduced through 
the discretization of the time axis. 



CHAPTERS 

LOSS OF INFORMATION BY DISCRETE POINT 
SAMPLING 

In this chapter, expressions are developed for 
determination of the expected information loss as a 
function of the sampling interval, £lt. It is assumed 
throughout the chapter that the sampling is per­
formed by discrete periodic observations of instan­
taneous values. 

In subchapter 3.3 the expected uncertainty 
loss was found to be a function of bias and variance 
of the estimate. These two properties have been 
evaluated for a set of selected estimates as functions 
of At and of the mean J.L, variance, o2

, and auto­
covariance, -y(u), of the underlying continuous pro­
cess. This provides the most general framework for 
evaluating the loss of information in a given process. 
No attempts have been made to express the loss for 
given dependence models, because it is believed that 
so far, no generally accepted model exists for con­
tinuous hyc1rolQSic time series. If future research 
should develop theoretically based autocovariance 
functions for hydrologic pro~sses, these might be 
substituted in the equations presented to express the 
information losses in closed form. At present this is 
not possible, so instead it is suggested that empirical 
covariance functions be estimated from continuous 
samples of the processes, and, based on this, the 
information losses can be computed numerically from 
the equations presented. 

Even though the topic of this study is a com­
parison between continuous and discrete sampling of 
stochastic processes, it is sufficient to consider dis­
crete sampling only. The reason for this is the 
approximate frequency-limited behavior of the 
spectrum of most, if not all, hydrologic time series. 
According to the sampling theorem discussed in sub­
chapter 4.1, a sufficiently dense discrete sampling of 
a frequency-limited signal contains all the informa­
tion of the continuous signal. This is in the sense that 
the sample spectrum is undistorted and that the 
original signal may be completely recovered from the 
discrete sample by a suitable flltering transformation. 
Therefore, it has been decided to exploit this pro­
perty in this study and to consider a continuous trace 
and a discrete trace sampled at twice the critical 
frequency to be equivalent, and to measure the 
information loss due to coarser discretization relative 
to this latter case. This gives the convenience of limit­
ing the analysis strictly to discrete processes. It 
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should be emphasized, however, that this simplifica­
tion is made mainly because mathematically the main 
difference between the discrete and continuous pro­
cesses is the change of summation signs to integral 
signs, and that by considering discrete processes only, 
the use of the integral versions of results becomes 
unnecessary. 

5.1 Loss of Information in Estimating Distribution 
Functions 

The distribution function Fx(x) of a random 
variable is estimated by the relative frequency distri­
bution curve determined from the sample. Siddiqui 
(1962) found the bias and variance for such an esti­
mate by considering the process 

Y. =I if X. .;;;; X 
I I (5.1) 

Y. = 0 otherwise 
I 

If a time series, X(t) of length Ts is sampled 
periodically with sampling interval At, the number 
of sampled values is T

5
/Llt. The estimate may now be 

written as 
T jt..t 

t..t s 
~x(x) = r .~ yi 

s I-} 
(5.2) 

so F x (x) is actually a sample mean of the random 
variable Y. . The bias of the sample mean is always 
zero, so the b ias of ~ (x) is zero for any sampling 

X 

interval At. The variance of a sample mean is given in 
Eq. 5.12, which for the Yi process becomes 

T / t..t-1 

vrt\(x)] = ~ra~ + 2 u!l o. ¥/) 'Yy(u)] (
5

.3) 

Here o~ and 'Yy(u) arc respectively the variance 
and autocovariance functions of the random vari­
able, Y with 

and 

for -y(ut..t) ::/= 0. If -y(uAt) eq:uals zero, 'Yy(u) 
vanishes. The value of P[Xi .;;;; x, Xi+u<1t .;;;; x] 
may be found for a normal process from tables of the 



bivariate normal distribution, since the mean p., the 
variance a 2 , and the autocovariance r(u) of 
the X(t) process are assumed known. For non­
normal cases either a transformation to normal vari­
ables, or the bivariate Gamma distribution may be 
used as the population distribution function for the 
computation of 'Yy(u). In this latter case, the shape 
parameter a and scale parameter {J are computed 
by 

and 

a~ 
{J= ­

JJ. 

(5.6) 

(5.7) 

With the bias 8 [P (x)J equal to zero and vari· 
A X 

ance V[F x(x)] determined in Eq. 5.3 as a function 
of 6.t, the expected information loss of Eq. 3.16 
simplifies to 

I (Fix),At) = .3989 k JV[F ,.<x>J (5.8) 

Based on Eqs. 5.3 and 5.8 the information loss may 
be evaluated for any given covariance function and 
discretization interval. 

5.2 Loss of Information in Estimating the Mean 
The mean p. of a stochastic process is one of 

its most important characteristics. It is estimated by 
the sample mean [1 of N observations of the pro­
cess. 

The bias of the sample mean is zero, and the 
variance of the estimate is expressed by 

... ... I N N 
V[p.) = E[(J.i·JJ.)2 J = --

2 
_1: .1: E[(X.-p.)(X.-p.)) 

N •= I j=l I ' 

or 
A 1 N N 

V [J.i ) = - 1: 1: C[X. ,X .. ] 
N2 i=l j= l I ' (5.9) 

where C [X. ,X.] is the covariance between 
I J 

the i'th and the j'th observations. If r(u) is the 
autocovariance of the continuous process 

(5.10) 

and using the symmetry in r(u), Eq. 5.9 can be 
written as 

... I N-1 u 
V[JJ.] = u [a2 + 2 1: (I - n)'y(uAt)] 

1'1 u=l ,.,. 
{5 .11) 
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or, by introduction of N = TsfAt 

2 2 T /6.t-l 
" a 5 ~ uAt 

V[p.] =6.t[r+r u~J ( 1 -T)r(uA.t)) 
s s s (5.12) 

The variance of p can also be expressed in terms of 
the spectral density function r(f) (Siddiqui 1962). 
If r(f) is known, the following asymptotic expres­
sion is useful for large T and small At: s 

V(~ ] = 6.t .q0- (5.13) 
5 

For any given sampling interval At and autoco­
variance function r(u), the expected information 
loss can now be determined by 

"' I (JJ.,At) 

= .3989 k 
T /At·l 

A.t [ 2 J ~-1 a +_ ~ 
s u= I 

(5.14) 

UAt 
(I · -f--h ( uAt)) 

s 

The information loss includes the factor ..../lif; how­
ever the number of terms in the summation is dimi­
nished with increased At, which decreases the 
magnitude of the factor in parenthesis. It is actually 
possible to construct autocovariance functions, where 
the latter factor dominates over the increase 
in 6.t, so the information loss decreases with in­
creased 6.t. But it is easily shown that, for the mono­
tonically decreasing, convex autocovariance functions 
that are most common for hydrologic processes, in­
formation losses of the mean estimate will always 
increase with increase of At. 

If the series is a frrst-order Markov model, the 
variance can 'be found in closed form (Brooks and 
Carruthers, 1953). For a second-order Markov model, 
the variance has been found by Reiher and Huzzen 
(1967) and Quimpo (1969), but the analytical expres­
sion is rather complex, and the results are given in 
tabular form. In general, the first and second-order 
Markov model!.s are often insufficient for modeling of 
closely sampled hydrologic series. In such cases, a 
direct sample estimate of the autocovariance func­
tion r(u) of the process under investigation should 
be used in Eq. 5.14 and the change in information 
with changes in A.t determined numerically. 

5.3 Loss of Information in Estimating Variance and 
Autocovariance 

The variance a2 and autocovariance func­
tion r(u) define the second-order moments of the 



process. Since the variance is equal to -y(O), expres­
sions for bias and variance of the estimates r(u) of 
-y{u) are developed as functions of L!.t. From these, 
the properties of the variance estjmate o2 may be 
found as a special case. 

The autocovariance may be estimated based 
on N equally spaced observation of X as 

(5 .15) 

To find the expectation of 1(u) Eq. 5.15 can be re­
written as 

• 1 N-u 
r(u) == 1if.U I: (X. • J.I)(X. • J.l) . (p . J.l)2 

i=l o o+u (5.16) 

The mean J.l may be assumed equal to zero without 
loss of generality. The expectation of the first term 
becomes, by the defintion of r(u), 

1 N-u 
E IN-u i~l (X; ·J.I)(Xi• u ·J.I)] = r(u) 

According to Eq. 5.12 the expectation of the second 
term becomes 

A ... I ' N-1 u 
E[(J.I·J.1)2

] = V[p] = r~ [a· +~~ (1- -N)r(ul!.t)] 
I>~ u= I 

So by introducing T / l!.t = N the expected value 
A S 

of r(u) is 
T / f!.t · l 

... L!.t , ' ul!.t 
E[r(u)] = r(u) · Ts [a· + 2 u~l ( I . y · ) -y(ul!.t)J, 

' 

and the bias for a given l!.t is 

T / l!.t -1 

(5 .17) 

... l!.t , ' ul!.t 
B[-y(uJI = · 1 [a·+ 2 L (I - 1 - ) r (ut.l)l 

s u= I , 
(5.18) 

An appr oximate expression for the variance 
of f(u) has been determined by Bartlett (1946) as 

I N-u 
V[,Y(u)j '=" N- L IC2 IX .X. , I 

i=-N+u ' 1 ' 
(5 .19) 

+C[X .. X. - I C'[X.X . 11 -
J J i 1- U J J I tt U 

For a sampling interval l!.t, the autocovariances are 

C'[Xi ,xi• i 1 = 'Y(it.t). 

\[X .. X . I = -y(it.t-u). <~flU ' ,., ... 
Cl X. ,X. . J = 'Y(il!.t+u) , 

J J + I- U 
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so that 

, t.t TJ !!.t·u 
Y [r(u)] "" 1 . k [r(il!.t)2 + -y(it.t-u) -y(il!. t+u)l . 

s 1=·T I l!.t+u 
' (5.20) 

or by using the symmetry in r(u): 

... l!.t 
V('Y(u)] "" T [a4 + r(u)2 

' 
T)6t·U 

+ 2 ~ b(il!.t )2 + -y(it.t·u) r(il!.t+u)l 
i=l 

(5.21) 

Equations 5 .18 and 5 .21 apply to small samples 
and can, therefore, be used without discrimination. 
For large samples, simplified approximations such as 
those presented by Siddiqui (1962), can be obtained. 
The reason for using the more complex, small sample 
formulas is that the sample size decreases with an 
increase in the sampling interval l!.t, and, therefore, 
it is important not to use asymptotic expressions for 
the bias and the variance. Bias and variance of :Y(u) 
may now be determined as functions of l!.t for any 
given autocovariance function and by Eq. 3.16, the 
expected information loss i{,Y(u),l!.t) may be found. 

It should be noted that r (u) can be estimated 
only if L!.t is smaller than u and if u is a multiple 
of l!.t. If these conditions are not fulfilled, no infor­
mation about -y(u) is contained in the sample. 

For the variance estimate 82
, the bias is found 

from Eq. 5.18: 

T / f!.t· l 
B(cr 2

] = ~t [a2 + 2 -~ (1 . ~t ) r (it.t)J (5.22) 
s •- I s 

and the variance fP is 

(5.23) 

For a given autocovariance function 1(&2 ,l!.t) is 
found by substitution of Eqs. 5.22 and 5.23 into Eq. 
3.16. 

As was the case for the mean, the bias and vari­
ance of the estimators above tend to increase with an 
increased At through the factor L!.t, whereas the 
reduction of terms in summation of the autoco· 
variances has the opposite effect. If the latter is 
dominating, the information content may increase 
with an increase of At, so that very close sampling is 
actually detrimental; however, if the autocovariance 



function is convex, as is mostly the case in hydrology, 
the information content in the variance and autoco­
variance estimate will always increase with a decrease 
of D.t. 

5.4 Analysis of the First Derivative o f the Process 

The first derivative of a stochastic process is a 
measure of the rate of change per unit time. It is 
intuitively evident that a process with rapid changes 
should be sampled more closely than a more slowly 
changing process in order not to lose important in­
fo rmation. The derivative is estimated by the 
difference between adjacent sample values; too open 
sampling may not show all the variability in the 
underlying continuous realization and therefore tend 
to make the process appear more smooth than it 
really is. Being a function of the stochastic pro­
cess X(t), the derivative X'(t) is itself a stochastic 
process that is characterized by its mean, variance and 
autocovariance. A realization of the derivative process 
illustrates the changes in the original process as large 
values of X'(t) are associated with rapid changes, 
whereas small values are associated with slow changes, 
as shown in Figs. 5.1 and 5.2. 

Cramer and Leadbetter (1967) presented a 
general analysis of the derivative X'(t) of a sto-

X( t) 

t 

X'(t) 

t 

Fig. 5.1 Irregular process with rapid changes. 
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chastic process by showing that X'(t) has the 
expected value 

E[X'(t)) = 0 (5.24) 

and the autocovariance 

o2 
'Y ( u) " 

-y .(u)=·--,- =--y (u) 
X au· (5.25) 

i.e. the autocovariance of the derivative process is 
the negative value of the second derivative of the 
autocovariancc of the original process. In particular, 
the variance of the derivative becomes 

V[X'(t ) j =· -y" (0) • (5.26) 

a parameter that is of great significance for some 
extreme and crossing properties. Intuitively, it is not 
difficult to understand the implications of changes 
in ·1'"(0). A large value implies that the derivatives 
cover a wide range, and that many rapid changes arc 
present in the original process. This makes the process 
appear very irregular, whereas a process with 
small ·"f"(O) has a more smooth and wavy appear· 
ance. Hence --y"(O) can be considered as a measure 
o f the irregularity of a process. It should be noted 

X (t) 

t 

X'(t ) 

t 

Fig. 5.2 Smooth process with slow changes. 



that this measure is nonstructural without making 
any other assumption about the process except that it 
is stationary and differentiable. 

Another measure of irregularity, or of the high­
frequency behavior of the process, is found in the 
spectrum. As might be expected, there is a close rela­
tion between -J"(O) and the spectrum r(f). 

Be definition, if f denotes the angular fre­
quency, 

00 

-y(u ) = f r (f) ~:os (uf)df (5.27) 
-00 

so 
00 

-y"(u) = - J f2 T'(f) WS (fu)df 
..00 

(5.28) 

and 
00 

-y"(O) = - .r 
..00 

f2 f'(f) df . (5.29) 

i.e., -y"(O) is the negative value of the second 
moment of the spectrum with respect to the origin 
of f. However, the most important implication of 
-y"(O) is that it is an important parameter affecting 
certain extreme and crossing properties of a continu­
ous stochastic process, and Joss of information in esti­
mation of r"(O) will therefore be carried over into 
the estimation of these properties. 

r "(O) may be estimated by computing the 
second moment of the sample spectrum, taken about 
the origin. However, estimation of the spectrum is as 
known connected with some difficulties, in particular 
for short samples often encountered in hydrologic 
applications. Hence, it is more advantageous to base 
the estimations on the sample autocovariance. 

Because of discrete sampling, the sample auto­
covariance is a discrete function and cannot 
give r "(O) directly by differentation. Rodriguez 
(1968) proposed a finite difference approximation 
to r"(O) by 

""( 2 [" A r 0) = ~12 r(~t) - r(O)] (5.30) 

This estimate is equivalent to a direct estima· 
tion of the variance of the differences between adja­
cent values of the discrete sampled process, and is as 
such an efficient estimate of that particular para­
meter. However, the actual parameter of interest is 
the variance of the derivative of the continuous pro-
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cess, and an estimate of this parameter has been pro­
posed by Ditlevsen ( 1971 ). 

For a discrete sample, the spectrum is defined 
only within the limits 0 < f < 1 /2~t. However, if 
the sampling rate is equal to or higher than the maxi­
mum frequency fc in the process, i.e., ~t* 
,;;;; l /2fc, the spectrum of the discretely sampled 
process is identical to the spectrum of the continuous 
process. Without any loss of accuracy, then, 

oo I /:!~t* 
r"(O) =- 47T2 f f2 f'(f)df =. 87T2 .r f2 I'(f)df, 

.00 0 

where f is the ordinary frequency. 

By defmition 

1 
o ..;; r..;; 2Et; 

00 

Introducing Eq. 5.32 into Eq. 5.3 1 

(5.31) 

(5.32) 

1 7T2 oo l· l)u 
r"(O) = - ~d [r o2 + 4 u~l - 2- r(u~t ... )] 

u (5.33) 

Eq. 5.33 gives the exact value r"(O) of a continuous 
autocovariance r(u) expressed by a discrete repr·e­
sentation r(u~t.), and it shows that continuous 
sampling and discrete sampling give identical results 
as long as ~t * ~ I /2fc. For larger sampling inter­
vals, a bias will be introduced into r"(O). For a 
given llt, the estimate of r"(O) becomes 

1 7T2 
,., [ " 2 
'Y (0) = - - - a 

~t2 3 

N 
+4 L 

u=l 
(5.34) 

The advantage of this estimate is, that for sampling 
frequencies higher than the critical frequency it gives 
results equivalent to those obtained by estimat­
ing r"(O) based on a continuous sample. If the esti­
mates of the autocovariances can be assumed un­
biased, such as may be the case for large samples, the 
estimate of Eq. 5.34 is unbiased too. It can be seen 
that the coefficients reduce the influence of the 
large-lag autocovariance estimates, so that an accurate 
estimate of these are of less importance. 



If the sampling frequency is below the critical 
frequency, the estimate of -y''(O) becomes biased. It 
is possible to express the bias directly as a function of 
autocovariances in the analysis of the sampling pro­
perties of .Y"(O). However, the resulting equation 
becomes so complex that it is practical only to pre­
sent the expectation of f'(O) and determine the 
bias based on a direct computation of -y"(O) for the 
approximation to the underlying process sampled 
with the sampling interval At* = l /2fc. The ex­
pectation of Eq. 5.34 is 

E[ ~"(0)] = -- 1
- {~3 E[o2 ] 

Atl 
T5/At (-l)u 

+ 4 1: •-- E( ~(uAt)) } (5.35) 
u=l u~ 

where E(9(u)] can be found from Eq. 5.17 and the 
bias is 

B [ ~"(0)] = E(~"(0)]+4~ 

(5.36) 

The variance is found by considering the variance of 
the sum 

T
5
/At 

V[~"(O)] = V ( l: 
At4 u=O 

a ~ (uAt)] 
u (5.37) 

where 

a
0 

= 3 , for u = 0 

and (· 1 )u 
a = 4 --~- , for u f 0 , 

u u• 

so that 

VI.Y' (0)) 
T

5
/At T

5
/At 

l: ~ 
u=O v=O 

= - -

(5.38) 

According to Bartlett (1946), the autocovariances are 

A A At ~ 
C[-y(uAt), -y(vAt)) ~ ,.- l: ['Y(iAt)'Y((i+u-v)At) 

s i = . 00 

+ -y((i+u)Ath((i-v)At)) . (5.39) 

With the autocovariance -y(u) of the continuous pro­
cess given, B (1'"(0)] and V ['Y"(O)] may be deter-

20 

mined for different values of At, and by substituting 
them into Eq. 3.16, the expected information 
loss l(-y"(O),.Ot] can be found. In Chapter 8 it is 
shown that, for large sampling intervals, the bias of 
the estimate of -y"(O) can become the dominating 
contributor to the information loss. In this case, 
inclusion of the bias is essential for a proper measure 
of information content, and concepts such as 
Shannon's would not give a true picture of the 
changes of information with increase of the sampling 
interval. 

5.5 Loss of Information in Estimating Probabilities 
of Extremes 

The estimation of the probability that a hydro­
logic variable such as a flood discharge exceeds a 
certain value is. a very important practical problem. 
Evidently, loss of information in estimating the pro­
bability of an extreme can occur if the sampling 
interval is so wide that extreme events occur between 
two adjacent observations. Hence, for a very irregular 
process with rapid changes, close sampling is essential, 
whereas the extremes of more smooth processes can 
be detected by a relatively wide sampling interval. 

Several different approaches have been applied 
in hydrologic studies of probabilities of extremes. 
Beginning with the work of Hazen (1914), a much 
used technique applies the fitting to empirical fre­
quency curves of standard probability functions such 
as the normal,lognormal or Pearson Type III distribu­
tions. Another much used approach, first presented 
by Fisher and Tippett (1928) and introduced into 
hydrologic studies by Gumbel (1945), uses the 
double exponential distribution 

(5.40) 

to model the distribution of the extremes in a time 
interval 0 < t < T, under the assumption that T 
is large. 

More recently, Zelenhasic (1970) has demon­
strated still another approach by considering the 
stream of flood events as an intermittent random 
process. This approach is based on the contributions 
by Todorovic (1970) on the problem of probabilities 
of a random number of random variables. 

Common to the approaches above is that they 
consider the extremes as new random variables de­
rived from the underlying continuous process, and 
this complicates an analysis of the influence of the 
choice of sampling interval. Therefore, the present 



investigation is based on an approach that relates 
the properties of the underlying continuous process 
directly to the probability of extremes, as presented 
by Ditlevsen (1971 ). It has been used in flood 
analysis by Mejia ( 1971 ). 

In an analysis of the extremes of a continuous 
normal process Cramer and Leadbetter (1967) shows 
that there is an important relationship between the 
second spectral moment \ and the probability of 
extremes. They develop the asymptotic relation for 
a standardized normal process in a time interval of 
length T as 

!I! A+z ·"1. Pl max X(t) ~ (2Qn T) - + -- -:;::Jf ] :!! e .... 
O<t<T (2~n T) 

(5.41) 

for large T. Here 
VA; 

A == ~n :27T , (5.42) 

and 

00 

>..2 == J r r (f) df = . -y"(o) 
- 00 

(5.43) 

Hence, the parameters of the classical double ex­
ponential extreme distribution of Eq. 5.40 are related 
to 'Y''(O). This parameter was studied in subchapter 
5.4, where its dependence on the high frequency 
terms in the spectrum was demonstrated. 

Based on Eq. 5 .41 and the results of subchapter 
5.4, the effect of discrete sampling on the double 
exponential distribution may be investigated. How­
ever, the asymptotic assumption about large T is un­
fortunate in hydrologic studies, where the seasonal 
variation over the year limits the time period during 
which the process can be considered stationary. 
Ditlevsen ( 197 1) studied the probabilities of extremes 
of a con t inuous process in the inter­
va I 0 < t < T without the assumption of a 
large T. He developed the following general expres­
sion for the probability that the maximum value of 
the p rocess X(t) in the tim e inter­
val 0 < t < T docs not exceed a given level u: 

P [ max X( t) '( ul 
O<t<T 

E(U
0
(0,J)]T 

= P(X(O) ~ uJ exp [- P[X(O) ~ u] ) exp [G(T)) 

(5.44) 
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where E[U (0,1)) is the expected number of up-
u 

crossings of level u in a unit time period. This value 
was found by Rice (1945) for a normal process with 
mean J1 and variance o2 

_p:; 
E[Uu (O,l)] =v T1T ¢ (u

5
) • (5.45) 

where again >..
2 

is the second moment of the 
spectrum and ¢(u

5
) is the standardized normal 

density function evaluated in u
5 

= (u-Jl)/x. 

Furthermore, 

P[X(O) ~ u) = 4> (u
5

) (5 .46) 

where c;l>(u
5

) is the standardized normal distribution 
function. The only unknown now is the factor, cxp 
G(T). Ditlevsen realized the practical difficulties in 
finding G(f), for even simple processes. He there­
fore assumed that in practical applications G(f) may 
be equal to zero and supported this assumption with 
extensive checking by means of data generation. 
Furthermore, he showed that even with this assurnp· 
tion Eq. 5.44 converges to the double exponential 
distribution of Eq. 5.40 when T-+<><>. Hence, for a 
normal process X(t) with mean Jl , variance o2 and 
second spectral moment X2 : 

Td> (u) 
Pl max X(t) :;;;; uj = <l>(u.) cxp I - r-;: ' - A I 

o<t<T s v2rr <l>(u ) 
' (5.47) 

Again the importance of the high frequency para­
meter >..2 is evident. 

An est imate of th e pr o-
bability P[Max X(t) :;;;; u) for a given sampling in· 
terval can be found by substituting the esti­
mate ~2 for >..2. To find the exact sampling mean 
and variance of this estimate as a function of L\t is 
extremely difficult, due to the complexity of Eq. 
5.47. Instead, this equation is expanded in a Taylor 
series around the mean J1 * of >..2, and the mean and 
variance of this approximation is found. 

The second order expansion is of the form 

where x is substituted for >..2. 



The expected value of f(x) is found by taking 
the expectation of Eq. 5.48. E [X·I-I•l = 0, and 
when x is normally distributed with the vari­
ance at with the skewness E (X·i-1•)3 zero, the 
approximation for the mean is 

I " 2 E[f(x)J ~ f(l-l•) + ., f (/.1.) a. . {5.49) 

The approximate second moment of f(x) becomes 

E(f(x)2 J :::!! E!f(/.1.)2 + 2f(J1..)r(/.l•) (x - 1-1•) 

+ (f (J..r.)f"(J..r.) + f'(J..r.)2)(x-J.L.)2 

+ f'(J..r.)f"(I-I.)(X . 1-1•)3 + i f"(JJ..)2 (X·IJ.•)4 I 

~ f(JJ..)2 + (f(J..r.)r'(J..r.) + r(J..r.)2
) • 

2 :3 ' 2 o. + 4 f' (/.1.) o! . (5.50) 

because for X normal, E [ (X·IJ. . ) ] 4 = 3a • 4 • 

The variance is found from 

V(f(x)J = E!f(x)2 1 • E2 !f(x)J 

= f'(l-l.)2 o~ + { f"(J..r. )2 o! . (5.51) 

and the expression for the probability of extremes, 
Eq. 5.47 then becomes 

f(x) = <t> ( u) cxp ( Vx'J 
(5.52) 

H (us) T</! (u ) 
f'(x) =. exp (· <IJ(u )~ Vx I 

2v'!"vx , 
(5 .53) 

and 

T cp ( u, ) .....L T <P ( u ) 
t"'<x) = I + ' I 

4v'21f X Vx V"Er c).> ( U ) 
' 

cxr I (5 .54) 

By substituting IJ.• = E [A2] for x in Eqs. 5.52 to 
5.54 and a~ = V[A

2
] in Eqs. 5.49 and 5.51, the 

expectation and variance of the estimate is given in 
terms of the mean and variance of A

2
. In subchapter 
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5.4 the mean and variance of the estimate ~"(0) 
of 'Y''(O) are found as functions of the sampling 
interval Llt. As A.

2 
= -r"(O), then 

(5 .55) 

and 

2 A A" o. = V[A2 1 = V[-y (0)] . (5.56) 

The above analysis permits computation of the 
expectation and variance of the estimate of the 
probability of extremes of a continuous normal pro­
cess for any given autocovariance r(u) and sampling 
interval Llt. The bias of the estimate is found by 
subtraction of the population value, and the expected 
uncertainty loss T[P,Llt] is found by substitution of 
bias and vatiance into Eq. 3.16. 

The significant bias that is characteristic for 
estimates of r "(O) when the sampling interval is 
large will influence the estimation of the probability 
of extremes accordingly. This bias is a measure of the 
amount of extreme events that are not detected by 
the discrete sampling; it should be accounted for in 
the information concept, just as has been done by the 
expected information Joss. 

5.6 Loss of lnfonnation in Estimating Run Pro­
perties 
Although it seems to be of similar importance 

as the flood frequency analysis, the analysis of runs 
has attracted less attention in hydrologic studies. A 
run is defined as a sequence of the stochastic process 
with a speci ficd property, and in particular, a positive 
run is an uninterrupted sequence that exceeds a 
certain level u. The interest may be concentrated o n 
t he number of runs Nu in particu lar 
time 0 < t < T , or on the length Lu and 
area Su of the run, all considered as random vari­
ables, Fig. 5 .3. An example to illustrate the impor­
tance of including all these properties in a study of 
extremes may be found in the design of a flood reten­
tion structure. as its dimension is a function not only 
of the maximum instantaneous value of the flood 
event, but also of the duration and the volume of 
water associated with the event. Another example is 
found in degradation for which a relatively low tlood 
flow of extended duration may be more critical than 
a large flood of a short duration. Similar problems 
arise in analyses of deficit situations in water supply 
or water quality problems. 
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Fig. 5.3 Definition of runs, as run-lengths L
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run-sums S and number of runs N . 
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Studies of run properties of continuous sto­
chastic processes have been made by Rice {1945) and 
Cramer and Leadbetter {1967). Rodriques (1968), 
Nordin and Rosbjerg (1970) and Nordin (I 971) pre­
sents applications of their results to hydrologic time 
series. In general, the stochastic properties 
of N u, Lu and $

0 
are complex functions of the 

distribution and autocovariance of the process. How­
ever, for normal processes the mean values N , 
- - u 
Lu and Su depend upon the variance a2 and the 

second spectral moment \ only. Because X
2 

is 
particularly sensitive to the choice of samplino inter-

- - - 0 
val, the estimate of N , L and S will be affected 

u u u 
accordingly. As in the case with the extremes, a too 
open sampling interval may not reveal all the vari­
ability in the process and consequently may give 
biased estimates of the true properties. 

The average number of positive runs N has a 
u 

definite practical importance by indicating how many 
times the process exceeds a given level u uninter­
rupted. If the process of interest is a water quality 
parameter, it denotes how many times a year a given 
quality standard may be expected to be violated. For 
a discharge series, it gives the number of separate 
flood events in a period. Examples of similar 
importance arc easily found. 

The mean number of positive runs of a normal 
process with mean JJ. and variance a2 in a time 
period T was developed by Rice {1945): 

(5.57) 

with u = (u-p)/o. An estimate of N is found by s u 
substituting the estimate ~2 for A~ In this case, the 
mean and variance of the estimate Nu are found by 
using the Taylor expansion approximation given in 
Eqs. 5.49 and 5 .5 I ; then 

r:. j - uj _L ( I ~ I . .l / 2 ' I 
l . = f/> u l JJ. ,..- - o JJ~ o;. 

..j'5r ' n 

(5.58) 
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and 
.. Tl 

YIN) =&JTI/>2 (u5) [JJ..- 1 al+ - p-,.. 3 a~ J. 
8 

(5.59) 

Again 

(5 .60) 

and 

a~ = V l~2l = V 11"(0)] (5 .61) 

which are related to the sampling properties 
of 1-"(0) found in subchapter 5.4 as functions of the 
sampling interval .6.t. As in the case of extremes, an 
explicit presentation of the effect of the sampling 
interval on the properties of Nu is not practical. The 
expected information loss must be found by numeri­
cal computation of the single factors step by step. 

Given the mean of N
0 

from Eq. 5 .58, the bias 
is found by subtraction of the population value 
of ~u. The variance of Nu is determined by Eq. 
5.59, and by substituting it into Eq. 3.16, the 
information loss can be determined for different 
sampling intervals. 

The knowledge about the mean of the run­
length Lu is of importance in the analysis of parti­
cular exceedances such as Oood events or water pollu­
tion occurrences. It gives the expected duration of 
the adverse situation, and as such influences 
economic losses that may be associated with the 
events. 

The expectation of the run-length of a normal 
process with mean fJ. and variance a2 is given by 
Cramer and Leadbetter ( 1967) 

T 
Lu = ::- P!XCO) > U I (5.62) 

N 
u 

or 

(5.63) 

An estlmate of L
0 

is found by substituting the csti­
mat! X2 for X2 . In this case the mean and variance 
of Lu are found by using the approximation given in 
Eqs. 5.49 and 5.51 

1-<1>( u ) 
ElL I = -..ffi" ' IJJ.···· + ~ JJ.~:- ~ a .. ~ I u ·~-,,-, - X 

(5.64) 



and 

1T 
V[L I= -( 

u 2 

(5.65) 

f.l* and a2 are defined by Eqs. 5.60 and 5 .61. 
Equations 5.64 and 5.65 form the basis for com­
puting the expected information loss for different 
sampling intervals .1t by a method similar to that 
mentioned for the mean number of runs, Nu. 

The mean run-sum Su is defined as the 
expected area between the crossing level u and the 
process itself. For a runoff record, this corresponds to 
the expected volume of water than must be stored if 
the riverflow must be kept below the flood level u. 
Similarly, when a water quality parameter violates a 
given standard, the mean run-sum denotes the addi­
tional amount of waste that created the critical situa­
tion. Many more examples of the practical signifi­
cance of this parameter can be easily found. 

Cramer and Leadbetter (1967) developed an 
expression for the total expected sum TSu of the 
normal process, exceeding u in a time period T 

~ X~ 

TSu = T ~ (x-u) 1> (x
5

) dx . X
5 

= (5.66) --
a 

or 

Nordin and Rosbjerg (1970) used Eq. 5 .67 to deter­
mine the expected value of the run-sum Su by 

or 

TS 
su = -f (5.68) 

u 

a(/J(u
5

) - u + u<t:>(us) 

¢(us) (5.69) 
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An estimate of Su is found by substituting th!l esti­
mate A

2 
for '1\

2
. The mean and variance of Su are 

obtained by using the approximations given in Eqs. 
5.49 and 5.51 as 

and 

~ a¢(us) - u + u<f>(u) 
E[S J = ..j2i1 ------­

¢(us) 

~ a¢(u ,) - u + u<l>(u) 
V [S ] - rr ' ' )~ 

u - T ( 
¢( us) 

It should be noted that as 

and 

then 

and 

S = k(u) L 
u u 

a¢ (u) 
k(u) = 1 _ <t>(~) 

s 
- u s 

... 
E!SuJ =k(u)E(Lu] 

"' "' 
V[S I = k(u)2 v(L I 

ll u 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

The expected information loss can be found by a 
step-by-step procedure as for the other parameters 
above. 



CHAPTER 6 

LOSS OF INFORMATION BY AVERAGE SAMPLING 

When statistical analysis of a continuous pro· 
cess of instantaneous values is based on samples of 
integrated interval values such as the average daily or 
weekly values, an additional information loss is added 
to the losses introduced by discrete sampling as 
described in Chapter 5. However, this additional Joss 
can be accounted for, and with a slight modification 
it is possible to find the information losses for the 
average sampling case based on the equations develop· 
ed in Chapter 5. 

6.1 Effect of Average Sampling on the Sampling 
Properties of a Continuous Process 
To find this additional Joss, consider the basic 

continuous process X(t) as an equivalent and dis­
cretized realization X; , with the sampling frequency 
at or above the critical spectral frequency f . This 

c 
sampling interval is used as the time unit, Llt ,. = 1, 
so that a period of length T has T observations s s 
of X .. 

I 

As mentioned in subchapter 4.2, the average 
sampling of xi is equivalent to discrete point 
sampling of the moving average process 

_ I j+~t-1 ·- I 
Y - ~~ - X . . J - I ·-····T ./Llt (6.1) 

.I i~j I s 

where Llt is the interval over which the average is 
taken, as shown by Fig. 4.4. The variable Yi is a 
linL:ar moving average process of X; and its expected 
value is 

C[YJ = F.[X] (6.2) 

so that the expectation of the Y . process is undis-
J 

torted. Its autocovariance function 'Yy (u) can be 
de termined from the autocovariance "f(u) of 
the X. process (Jenkins and Watts 1 968) as 

I 

_l Llt Llt 
"fy(u) = ; I ~ -y(u+i·i). (6.3) 

tot· i= l j~ I . 

In particular, the variance is 

I , "' Llt.- I u 
V[Y[ = ~ 1 [o ·+_ L. (l·rttl )'(u)J. 

u= l (6.4) 

where in general V [YJ becomes smaller than a2
• 

However , the process Y. is not the actual series of 
J 

average values, but this series can be formed by de-
riving a new discrete process A; by sampling 
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Y. with interval Llt. This process has the expecta· 
. } 

t10n 

E[A] = E [X] 

variance 

u~ = V[YJ 

and the autocovariance 

'YA (ullt) ~ 'Yy(ullt) 

I Llt At 
= - L L 'Y(ullt+i·j) 

Llt2 i=l j=J 

(6.5) 

(6.6) 

(6.7) 

The smoothing effect of average sampling introduces 
a distortion of the basic autocovariance of X. as illu-

' strated by Eq. 6.7. 

When the series of average values is used for 
estimating the properties of a continuous process, this 
distortion affects both the bias and the variance of 
the estimate. This effect can be separated into two 
components: 

(I) the bias introduced in to the basic process 
by the averaging procedure, and, 

(2) the bias and variance introduced by the 
estimation procedure in using the average interval 
values for statistical inference. 

The bias of an estimate 0: is the sum of the 
bias BA [a] introduced by Eq.A6.7 for the basic 
parameter a, and the bias BE [a A] introduced in 
estimating the parameter a A of the average process 
by discrete sampling of the Y. process, so that 

J 

(6.8) 

The variance of & is equal to the variance of a djs­
crete point sampling estimate of the average process 
parameter a A 

(6.9) 

The bias and variance due to discrete point sam­
pling BE[aA] and V[aAl can be found from the 
expressions developed in Chapter 5 when the autoco­
variance function for the average process, Eq. 6.7, is 
used instead of the autocovariance of the basic pro-



cess. The bias B A [a] due to the distortion may be 
found simply by evaluating the parameter based on 
the average process and subtracting it from the actual 
parameter. Thus, both the bias and the variance can 
be obtained for the average sampling case, and the 
expected information loss .. can then be determined as 
previously from Eq. 3.16. 

6.2 Loss of Information in Estimating Distribution 
Functions 

When the distribution function F x (x) is esti­
mated from the average series A. , the information ,.. 
loss is found by the variance of FA (x) from Eq. 5.3 
with 

(6.10) 

and 

(6.11) 

The bias due to averaging is 

(6.12) 

If F (x) is a normal distribution with a given 
mea~ J.1. and variance a2 FA (x) is normal with 
mean 1.1 and the variance given by Eq. 6.6, so 
that F (x) can be determined from tables. Bivariate 
norma~ tables are used to determine P[Ai 
< x A . ~ x] in Eq. 6.11, where the 

' I + U f1 t 
autocovariance may be computed by Eq. 6.7. 

If F (x) is assumed to be distributed as a two-x 
parameter Gamma distribution with the shape para-
meter a and the scale parameter {3, the procedure 
outlined above is still applicable. The average process 
is distributed as a two-parameter Gamma distribution 
with 

and 

2 
Q = _j£_ 

A a 2 
A (6.13) 

(6.14) 

since 1.12 and a A are known, a A and {3 A can be 
determined and, using tables for the bivariate Gamma 
function the procedure is similar so that for the 
normal case. 
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6.3 Loss of Information in Estimating the Mean 

Compared to continuous sampling, th e average 
sampling does not introduce any additional informa­
tion loss when the mean is estimated. Whether the 
sample mean is computed based on the continuous 
sample or based on daily, monthly or annual values 
makes no change in the value of the estimate, so all 
these estimates are identical random variables. It then 
follows that both their expectation and their variance 
must be equal and hence that the expected informa­
tion loss does not change with an increase of the 
sampling interval. 

6.4 Loss of Information in Estimating Variance and 
Autocovariance 

The averaging procedure will have a tendency 
to decrease the total variation in the sample and so to 
decrease both the variance and the autocovariance. 
On the other hand, the dependence between two 
points in time, as expressed by the correlation coef­
ficient, increases. The bias due to averaging may be 
determined by Eq. 6.7 as 

At At 
BA b{u.At)l = - 1-

2 
~ L -y(uAt+i-j) · -y(u~t) 

At i=l j=l 
(6.] 5) 

The estimation bias BE [,Y(uAt] and vari­
ance V[.YA(u At)] are found by Eqs. 5.18 and 5 .. 21 
if r A (uAt) of Eq. 6.7 is substituted for the autoco­
variance r(u) of the underlying process. The total 
sampling bias and the variance are evaluated and the 
expected information loss is then found for different 
values of At by Eq. 3.16. 

6.5 Analysis of the First Derivative of the Process 

Because the average sampling procedure tends 
to smooth out the largest irregularities of the process, 
it is evident that the parameter r"(O) is affected by 
this averaging. 

W i t h t h e d i s t o r t e d a u t o c a­
variance 'YA (uAt), given by Eq. 6.7, the distortion 
bias is 

(6.16) 

where 

and r"(O) is found by Eq. 5.33. 



The estimation bias may be found by Eq. 5.36 

(6.18) 

with E [,Y A (u)J determined as in subchapter 6.4. 

Similarly , V [:Y A (0)) is found by substi­
tuting rA(u) for r(u) in Eq. 5.39 and using these 
autocovariances in Eq. 5.37. The total bias and vari­
ance of the estimate may now be found and the 
information loss determined for different At. 

6.6 Loss of Information in Estimating Probabilities 
of Extremes 

It is well known that average sampling in many 
cases degrades important information about the. 
extremes. Even for relatively large catchment areas 
the instantaneous flood flow may be 2-3 times greater 
than the average daily value of the flood event. So, if 
the flood analysis is based on daily flows, serious 
error may be introduced. Similarly, it is impossible to 
infe r much about the instantaneous rainfall intensities 
from traditional measurements by integration of the 
bucket raingauge, if these are emptied, say, only 
every 3 or 6 hours. However, these intensities are 
important for urban drainage design, and similar 
problems. 

As mentioned in subchapters 6.4 and 6.5, both 
the variance a2 and the parameter 'Y"(O) are di­
storted by the averaging procedure, and this distor­
tion affects the probabilities of extremes accordingly. 
If the computation is based on average values, an 
averaging bias is introduced as 

8
1
\ [P[max X(t) ~ u]] = P[max XA (t) ,;;;; u! 

- l'jmax X(t) ,;;;; u] (6.19) 

where the latter term can be determined by Eq. 5.47 . 
The first term may be found from 

T ¢ (u . i\ l 
l'Xp 1-----~ ~- - vC I v0IT <I>( ll ) z .i\ • 

with 

',i\ 

- u_:,g 
us.A- aA 

(6.20) 
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Here a: and A.2 .A = ·-y A "(0) may be found based 
on Eq. 6.6 and Eq. 6.7, respectively. 

The additionaJ uncertainty due to the esti­
mation error, BE and V, may be found as des­
cribed in subchapter 5.5, if the variance and autoco­
varianccs of the average process are substituted for 
the corresponding parameters in the underlying pro­
cess. 

Given B A, BE. and V, the expected 
information loss can be computed by Eq. 3.16. 

6.7 Loss of Information in Estimating Run Properties 

As in the case with probabilities of extremes, 
the average sampling may cause significant distortions 
of run properties. 

Average sampling will tend to underestimate 
the number of runs, but overestimate the run lengths. 
If the mean number of runs of the underlying process 
is estimated from the average values. the bias due to 
averaging is 

with u = ..!!..:Jl 
s,A aA 

" 
The estimation bias and variance of Nu are obtained 
by Eqs. 5.58 and 5.59, using the parameters of the 
average process. 

Similarly, for the mean run-length, the bias of 
averaging becomes 

_ 1 1-<l>(u) 
BA[Ll,l =ffi [ ~ s.A 

VI\, • qi(us.A ) 
2 .A 

.J _ I- (l>(u ) 

A ---1/>(uJ l (6.22) 

" 
and the estimation bias BE [Lu] and vari-
ance v(t ] can be determined by Eq. 5.64 and 

u 
5.65. 

Fin ally, the averaging bias of the mean run-sum 
is _ a </>( u ) · u + u •I> ( 1.1 ) 
BA [S I = ffi' [- '- _._ ... _~.A ,,A 

u ~ </) (u,.fl ) 

I 

.,;r; 
o ¢(us)· u + u </>(\) 

¢(u) J (6.23) 



A 

:tnd th~ estimation bias BEfSu] and the var i­
ance V [S) of the run-length can be obtained by 
Eqs. 5.70 and 5.71. 
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Given th e toi:.ll bias as the sum 
of B A, and B E and the variance V, the expected 
information loss can be found for all three parameters 
by Eq. 3.16. 



CHAPTER 7 

LOSS OF INFORMATION BY QUANTIZATION 

Quantization refers to discretization of the ran­
dom variable itself. The values of the X-axis are 
pooled into a set of discrete class intervals 

. A Ax < X( ) ~ . A Ax . - 0 + 1 + .., 
1'-lX- T t "<::: 1'-lX + 2 ' I- ' - ' - - .... , 

so that the values of X(t) in the interval are replaced 
by the class interval center iAx. This procedure evi­
dently introduces a distortion of the underlying pro­
cess, but studies have shown that in most cases, the 
bias of quantization in the population moments 
averages out, approximately, or can be predicted and 
corrected for even with a surprisingly coarse quantiza­
tion. 

7.1 Effect of Quantization on t he Properties of the 
Continuous Process 
The problem of quantization was studied as 

early as 1898 (Sheppard, 1898) with the introduction 
of the Sheppard corrections in the estimated 
moments of a distribution function. In its present 

0 
1------ot 

!:lx 

X 

Xx(q) 

0 27T q 

Continuous Sampling 
!:lx 

form, the theory is due essentially to Widrow (1956) 
and Watts (1961), but the following discussion is 
taken mainly from a presentation by Korn (1966). 

Basically , the theory of quantization is based 
on arguments similar to the reasoning behind the 
sampling theorem presented in subchapter 4.1, 
although they are not identical. Consider the continu­
ous probability density function fx (x) of X of Fig. 
7 .1. 

The distribution function of the quantized vari­
able f x (x q) consists of a series of impulse func-

tions w~th distance Ax, where the height of each 
impulse equals the area of fx (x) for the corres­
ponding interval. The similarity to the discrete sam­
pling situation of Fig. 4.1 is evident,' with the only 
exception that the "discrete sampling" is an areal 
sampling instead of a point sampling. 

4 

t r 
0 
~ 

~X 

X 

Xxq(q) 

0 27T q 

Quantization Sampling. !:lx 

Fig. 7. 1 Effect of quantization of a continuous 
random variable. 
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Like the case of the sampling theorem, this 
problem may be studied more easily in the frequency 
domain by using the Fourier t ransforms 
Xx(P) and Xx (p) of fx(x) and fx (x ), or, 

eqUivalently, by an~yzing the characterist1c f:nctions 
o f these distributions. It is then possible to derive the 
quantization theorem, with its evident analogy to the 
time sampling theorem, Korn (1966): 

"If the density function f x (x) is 'frequency 
limited'. so that its characteristic function X x (p) 
= E[e•Px] vanishes for lpl ~ 2rr/Llx, then every 
existing moment E[x"] of fx(x) is completely 
determined by moments of the quantized pro­
cess fx (x ), and the quantization noise 

q q 

n =X - X 
4 4 

(7.1) 

is independently and uniformly distributed 
between -Llx/2 and tlx/2." 

A similar theorem applies to a bivariate distri­
bution so that the results can be extended to cover 
the joint moments such as the autocovariances of a 
stochastic process (Korn, 1966): 

.. If the JOint density f x, y(x,y) is 'frequency 
limited' so that the joint characteristic function 

- i(pl x + p2y) . 
Xx y(P1 ,p2)- E[e ] IS zero for Jp1 I ;a: 
2rr/6.x and lp2 1~2rr/ t..y, then every existing joint 
moment E(X"ym] is completely defined by the 
joint moments of the quantized process." 

The proof of these two theorems comes from 
the fact that the quantized characteristic function is a 
periodic copy of the original characteristic function, 
and as seen in Fig. 7.1, if Llx is small enough, the 
tails of the characteristic functions do not overlap, 
and the original characteristic function can be re­
covered. Because the moments can be found as deri­
vatives of the characteristic functions, it follows that 
the moments may also be recovered. The sampling 
was an "areal sa1npling" in contrast to the point 
sampling in the time-sampling theorem, so a correc­
tion for this distortion must be added, but this 
correction turns out to be surprisingly small even for 
coarse quantization intervals. 

ln particular, it has been shown by Korn 
( 1966) that 

E[X
4

) = E[X) , (7.2) 
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I , 
VI\ I = VIXJ +IT CiX" (7.3) 

and 

(7.4) 

For third and fourth order moments (Widrow, 1957), 

and 

(7.6) 

If the assumption of "frequency limitation" applies, 
the above equations indicate that the quantization 
affect on a random variable is either negligible or 
easily corrected. Actually, the real random variables 
cannot possibly satisfy this condition exactly, since 
physical variables are bounded. Nevertheless, many 
distributions satisfy the quantization theorems so 
nearly that excellent approximations result. The 
reason for this is that most continuous distribution 
functions are relatively smooth, i.e. they lack any 
significant high-frequency components, so the 
characteristic function dies out rapidly. In particular, 
if Eqs. 7.2 through 7.6 are applied to a normal pro­
cess, this approximation has negligible errors for 
quantization jntervals up to the same order of magni­
tude as the standard deviation. 

The results indicating that the quantization . 
noises are independent cannot hold exactly eith er. 
However, even for highly correlated observations tJtis 
is not a serious limitation. The correlation coefficient 
between two adjacent observations has been found 
for the normal case (Widrow 1957) 

p
0 

£!! exp (-4rr2 o2 /Llx2 (1-px)·] (7.7) 
q 

where p is the correlation coefficient between the 
X 

two adjacent values of X. It can be seen from Fig. 
7.2 that, even for Llx = 0.5a, the quantization 
noises are virtually uncorrelated for Px < .95. 

If the interval is so large that the quantization 
effect must be accounted for in estimating a para­
meter a, it corresponds to an additional 
bias BQ [a] similar to the effect of introducing the 
averaging bias BA [a] as described in Chapter 6. 
However, in this case, the bias is much smaJler, as 
only the variance is changed, whereas the m~an and 
the autocovariances are the same. 



Px 
Fig. 7 .2 Correlation of quantization noises. 

Including the bias from quantization, average 
sampling and point sampling, the total bias of the 
sample estimate becomes 

with BE {a) is developed in Chapter 5 
and B A [a:] in Chapter 6. Note that it can make a 
difference whether the averaging or the quantization 
is performe d first. If the quantiza tion is 
first, B A [a:] should be found based on the quanti­
zed properties and vice versa. 

The variance of a is found! from equations in 
Chapter 5, by using the properties of the distorted 
process, including both the quantization and 
averaging effects, or 

(7.9) 

where 

(7.10) 

Hence, both the bias and the variance may be found 
for given .6t and .6.x., and the expected informa­
tion loss can be evaluated by Eq. 3 .1 6. 

7.2 Loss of l!!formation in Estimating Distribution 
Functions 

The distribution function is biased because the 
bias is introduced into the moments, as shown by 
Eqs. 7.2 through 7.6. For a normal process with 
mean JJ., and variance a 2

, only the bias in the vari­
ance is relevant or 

(7.11) 
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and a similar expression can be found for the Gamma 
distribution. 

The bivariate distribution, used to compute 
ay and 'Yy(u) of Eqs. 5.4 and 5.5 as basis for the 
sampling variance, has the same mean and autoco­
variances as the basic process, and only the variance 
is changed according to Eq. 7.3. 

" 
Both the bias and the variance of F /x) can 

then be found as demonstrated above and the 
expected information loss evaluated. 

7.3 Loss of Information in Estimating the Mean 
The bias of the sample mean is zero, but the 

variance of the estimate increases as 

(7 .12) 

For an independent process V[~J = At/Ts o 2
, so 

in this case a quantization interval of O.Sa will intro­
duce an error of onlX about 2 per cent. For a 
dependent process, V[JJ.] is even larger and the rela­
tive impact of the error is less. Hence, the influence 
of quantization on the estimates of mean may be 
neglected in most cases. 

7.4 Loss of Information in Estimating Variance and 
Autocovariance 

Only the variance becomes biased due to the 
quantization as 

(7 .13) 

and 

B0 b'(u)] = 0 for u f 0 (7.14) 

The estimation bias and variance can be found 
by equations in subchapter 5.3. For the bias one 
finds 

(7.15) 

and the variance is 

,. 2 2 I At 4 
V[o0 ] ~ V[a ] + 7T 1 .6x 

s 
(7 .16) 

For the estimate of autocovariance, r(u), Eq. 5.18 
shows that t he bias is of the same order of magnitude 
as in Eq. 7.15, and the effect on the variance can be 
found from Eq. 5.1 9. The additional bias and vari­
ance introduced by quantization is negligible in most 



practical cases, which again illustrates that the un­
certainty introduced by the time sampling is by far 
the most important. 

7.5 Analysis of the First Derivative of the Process 

The fust derivative introduced by quantization 
into a process is, strictly speaking, always zero. Where 
the process jumps to another level, it is not even 
defined. However, if r"(O) is estimated by Eq. 5.42 
with quantized data, virtually the same result is ob­
tained as without quantization, as only the variance is 
biased with the amount 1/12 .ax2 , and this usually 
has a negligible influence on the summation. Con­
sequently, quantization does not introduce any signi­
ficant additional uncertainty in the estimation 
of -y"(O). 

7.6 Loss of Infonnation in Estimating Probabilities 
of Extremes and Run Properties 

The probability of extremes P[max X(t) :;;;;; 
u] and the run properties N , T and S are 

u u u 
shown in Chapter 5 to depend on the mean f.l., vari-
ance a2 and the second spectral moment ~. Only 
the variance has any significant bias, and as shown 
above, even this in most cases is negligible. Hence, for 
these properties, most of t11e commonly used quanti­
zation intervals do not introduce any significant addi­
tional uncertainty. 

7.7 Joint Effect of Quantization of a Random Vari­
able and Discrete Sampling in Time 
The analysis above has considered only the 

effect of quantization on the loss of information, 
neglecting the losses introduced by discrete sampling 
in time presented in Chapter 5 and 6. However, these 
losses will always occur together, so that their joint 
effect must be evaluated. 

It has been stressed above that the losses due to 
quantization become surprisingly small even for very 
coarse x-intervals. For an interval as large 
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as .ax == .Sa, the quantization bias introduced in 
the variance is only 

I 
8

0 
[a2

] =IT (O.Sa)2 = .02a2 

or only 2% of the total variance. Most hydrologic 
variables are actually quantized even finer than in this 
example, so it is evident that, compared to the infor­
mation loss introduced by time sampling, the quanti­
zation effect may usually be neglected completely. 

Much effort has been applied on attempts to 
increase the accuracy of measurements of hydrologic 
variables. However, if the purpose of data collection 
is to make inference about stochastic parameters, the 
results above indicate that the inaccuracies intro­
duced by measurement errors are insignificant com­
pared to time sampling errors, and that in this light 
very accurate measurements may often be un­
warranted. 

A sampling program should, therefore, pri­
marily emphasize sampling of many observations in 
time and relax accuracy requirements to the measure­
ments. This may be particularly important for water 
quality sampling, where expense of accurate measure­
ments tends to limit the number of samples that are 
taken. However, the information extracted might 
increase by trading the measurement accuracy for 
more frequent sampling. 

A similar conclusion about the dominating 
influence of time sampling errors in contrast to 
measurement errors has been reached by Moss 
(1970). 

It might be noted, however, that if the data are 
to be used for deterministic modeling, for example by 
computation of transfer-functions like unit hydro­
graphs, accurate measurement of the variable is 
essential. 



CHAPTER 8 

APPLICATION 

The procedures developed in the previous 
chapters are applied to a stream flow series for a 
demonstration of the effect of discrete point and 
average sampling in this particular case. The effect of 
quantization is negligible here and has not been 
included in the analysis. 

8.1 General Description of the Stream Flow Series 

The stream studied is the Davidson River near 
Brevard in North Carolina. This 40.4 sq. mi. undeve­
loped catchment area lies in a climatic region with 
frequent rain storms in the months of July and 
August, giving rise to a very irregular hydrograph, Fig. 
8 .1. It must be expected that the loss of information 
by discrete sampling can be very significant in this 
case. The catchment is equipped with a digital water­
stage recorder installed in the Fall of 1960. From the 
recorder, 10 years of instantaneous stage observations 
at 15 min. intervals are available on punched paper 
tape. The accuracy of the records is excellent, accord· 
ing to reports on surface water data issued by U. S. 
Geological Survey. 

The expressions for information loss are all 
based on the assumption of stationarity of the sto· 
chastic process. However, most hydrologic time series 
are nonstationary due to the presence of seasonal 
variations. In such cases, linear transformations may 
be used to obtain a new stationary series; or the series 
can be studied over a limited time period only, so 
that it may be considered approximately stationary. 

The latter approach is used here, so the stream 
flow series is considered as a stationary stochastic 
process during the flood season in July and August. 
No deterministic trend in the mean is found during 
this period. A weak daily periodicity is present, but 
its contribution to the to tal variance of the series is 
negligible, so it has been ignored. Figure 8.1 shows 
the presence of a cycle in the mean with a period of 
about a month. This cycle is not piesent every year 
and may therefore be considered as a random low 
frequency component. As this study is primarily an 
investigation of the effect of discrete sampling on the 
high frequency properties of the process, the in· 
fluence of such low frequency components on the 
information loss is not important. 
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8.2 Estimation of Parameters of the Continuous 
Stream Flow Series 

The expressions for information loss are all 
functions of the population parameters of the con· 
tinuous process, so in order to find the information 
loss by discrete sampling of Davidson River, estimates 
of the continuous population parameters must be 
made. It is then assumed, that these estimates are 
identical to the population parameters. 

Based on the observed series of stream flow 
data for the months of July and August during the 
period 1961-1970, the cumulative distribution func­
tion was estimated. A Smirnov-Kolmogorov test on a 
5 per cent confidence level accepted the hypothesis 
that the data follows a Jog-normal distribution. 
Accordingly, a logarithmic transformation of the 
original data will satisfy the normal assumption for 
the equations for probabilities of extremes and run 
properties developed in previous chapters. 

To determine the critical frequency fc, above 
which the spectrum can be assumed zero, the 
spectrum was fust estimated based on the 15 minute 
sampling interval. Neglecting spectral ordinates of a 
magnitude less than one percent of the spectral ordin· 
ate at the origin, the critical sampling inter­
val Llt., was found to be 2 hours. Therefore, a dis· 
crete series, Xi' derived by sampling the continuous 
process X(t) every 2 hours is considered the equi· 
valent to the original continuous series. 

The mean, variance and autocovariance func· 
tion of the discrete process, xi' were estimated by 
the estimates given in Chapter 5. For each of the 10 
years an estimate was made, and the final estimate 
was formed as the average of these ten estimates. 

The estimate of the autocovariance function is 
presented in Fig. 8.2. The ordinates have been scaled 
with the variance and correspond to the autoco· 
variance of a dimensionless standardized variable with 
zero mean and unit variance. This transformation 
does not affect the generality of the results. The com­
putation of the autocovariance estimates was stopped 
at the 24 hour lag, where the estimate is close to 
zero. For larger lag the autocovariances are assumed 
to be zero. 
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Fig. 8.1 Stream flow series of the Davidson River near Brevard, North Carolina, in the period July-August 
1968. 

The estimate of the spectrum of the discrete 
process, X., formed from observations every 2 

1 
hours, is shown in Fig. 8.3. It can be seen that the 
assumption about a frequency limit seems reasonable, 
since the major part of the variance is contributed by 
frequencies below f = 0.2. 

The second derivative of the autocovariance in 
the origin was estimated to "1(0) = -.23 1. Based on 
this value, the probabilities of extremes in a 24 hour 
period for exceedance levels zero, one, two and three 
t imes the standard deviation were estimated. 
Similarly, estimates of the mean number of runs, the 
mean run length and the mean run sum were ob-
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tained. These results are presented in Tables 8 .1 and 
8.2. 

8.3 Determination of Expected Information Loss 
A computer program has been written for com­

putation of the expected information losses based on 
the expressions developed in Chapters 5 and 6. For 
given estimates of mean, variance and autocovariancc 
function of the continuous process, the sampling bias, 
variance and information loss are determined as 
functions of the sampling interval .1t for both a dis­
crete sampling scheme and an average sampling 
scheme. The factor k in the information loss equa­
tion 3.16 is assumed to be one. 
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Fig. 8.2 Estimated autocovariance function ,Y (u) of Davidson River. 
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Fig. 8.3 Estimated spectrum f(f) for Davidson River. 
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TABLE 8.1 Estimates of Probabilities of Extremes 

Exceedance level u 
in s tandard deviations 

Probability of extremes P(max X(t) ~ u) 
O<t<24 hrs. 

0.0 . 0799 

1.0 . 4343 

2.0 .8607 

3.0 .9883 

TABLF 8.2 Estimates of Run Properties 

Crossing level Mean number Mean run length Mean run sum 
u of runs L s u u in standard per day Time unit = 2 hrs. Time unit = 2 hrs. deviations N u 

·o.o .9172 

1.0 .5562 

2.0 .1241 

3.0 .0101 

The bias, variance and expected information 
loss in estimates based on 20 years of samples of the 
months July and August of the Davidson River are 
presented in Appendix A. In this chapter only graphi­
cal presentations are shown of the expected informa­
tion loss as it changes when the sampling interval 
increases from 2 hours to 24 hours. 

Figure 8.4 shows that the information loss of 
the mean estimate increases very little when the 
sampling interval is increased from 2 hours to 24 
hours. The information content about the mean 
based on daily observations is virtually the same as if 
the inference were based on observations every· two 
hours. 

The size of sampling interval is more critical for 
the variance estimate, Fig. 8.5. An increase 
of .6.t from 2 hours to 6 hours does not introduce 
any significant loss, but if only daily samples are 
taken, the information loss increases by about 60 per­
cent. If average sampling is introduced, a serious loss 

6.542 5 . 219 

3.422 1. 797 

2.199 . 820 

1.590 .450 
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of information about the variance results, due to the 
biasing effect of the sampling procedure. Figure 8.6 
shows that the loss is two orders of magnitude larger 
than for the discretely sampled case, so in this case 
daily average value contains only a small amount of 
information about the variance of the underlying con­
tinuous process. If only daily average values are avail­
able, very little may be inferred about the actual vari­
ance. A sample of once a day observations would be 
much superior in this respect. 

The same comments apply to estimation of the 
autocovariance function, Figs. 8.7 and 8.8. With 
point sampling, an increase to 6 hour sampling inter­
vals gives negligible Joss of information. But if averuge 
sampling is introduced, the Joss becomes significant 
for any sampling rate. Hence, if a proper estimation 
of variance and covariance is of interest, average 
sampling should be avoided, whereas even daily dis­
crete sampling introduces a moderate information 
loss. 



The information loss by estimation of the 
second derivative of the covariance is shown in Fig. 
8.9. This loss is very sensitive to an increase 
in At, even for discrete point sampling. The loss in­
creases five times when At is increased from 2 to 4 
hours, an illustration of the contributions of high fre­
quency components that have been neglected by the 
increase. Further increase results in Jess drastic 
increases, and 12 hour sampling and 24 hour sampling 
are almost equivalent in this respect. Average 
sampling introduces an additional loss, but the differ­
ence between the two sampling schemes is not nearly 
as large as was the case with the variance and autoco­
variance, in particular for large sampling intervals. 

Figures 8.10 through 8.13 demonstrate the 
information losses caused by estimation of the pro­
bability of extremes for exccedance levels 0.0, 1.0, 
2.0 and 3.0 respectively. The general tendencies are 
the same as for estimation of r"(O). The major loss 
of information occurs by increasing At to 4 hours, 
and this effect -is particularly serious for the highest 
exceedance levels. Therefore, frequent sampling is of 
utmost importance, when the probabilities of 
extremes are of in te rest. Further increase 
of At increases the loss, but at a slower rate. For 
example, for the highest level an increase of At from 
12 hours to 24 hours increases the information Joss 
by only about 15 percent. So in this case an increase 
of At from 12 hours to 24 hours will result in only 
a minor increase in the information loss and these 
sampling intervals are almost equivalent. But a in­

crease from 2 hours to 4 hours will increase the infor­
mation loss by almost two orders of magnitude and 
the 2 hour sampling interval sho~ld be used. If the 
average sampling scheme is used, the loss wiD be 
about twice as much as for discrete point sampling, so 
the latter is superior for estimation of probabilities of 
extremes. 

Figures 8.14 through 8.17 show the informa­
tion losses in estimation of the mean run length for 
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crossing levels 0.0, 1.0, 2.0 and 3.0 respectively. The 
general characteristics are the same as for the prob­
ability of extremes. For the lower crossing levels, the 
rate of increase in information loss by increas· 
ing At from 2 hours to 4 hours is about half as big as 
it was for the probability of extremes, but for the 
high levels it is practically the same. Again, a frequent 
sampling is essential to prevent large loss of informa· 
tion. The losses by average sampling are about twice 
as big as for discrete point sampling. 

Figures 8.18 and 8.19 show the information 
loss of the estimate of run lengths. Here, the 
characteristic property is the steady increase in the 
loss with increase in At, contrasted to the estimates 
of probability of extremes and mean run length, 
where the rate of increase was diminishing for 
larger At. The loss introduced by average sampling is 
about three times the Joss by point sampling, so the 
averaging loses more information than was the case 
with the two previous properties. 

For estimation of the mean run sum, informa­
tion losses are given in Figs. 8.20 and 8.21. The 
general characteristics are similar to those for the run 
length, but the losses increase faster than in that case. 
The losses due to average sampling are again about 
three times as large as those caused by discrete point 
sampling. 

In summary it should be noted that for estima­
tion of mean, variance and autocovariance frequent 
point sampling seems of relatively small importance. 
For variance and autocovariance estimates, however, 
average sampling over even relatively small time inter­
vals can give rise to a significant loss of information. 
But when probabilities of extremes or run properties 
are of interest, frequent sampling is always essential: 
and the addit ional Joss introduced by average 
sampling is a relatively smaller component than was 
the case for variance and autocovariance estimates. 
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extremes. Exceedance level u = 2.0 standard deviations. 
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

9.1 Summary 

A general procedure for a quantitative evalua· 
lion of loss of information in estimating parameters 
of a continuous stochastic process based on discrete 
sampled data has been developed. Three different 
discretization procedures are considered: 

(1) The discrete point sampling scheme, where 
the process is sampled in time as a series of instan· 
taneous values at periodic time intervals. 

(2) The average sampling scheme, where the 
process is sampled in lime as a series of average values 
over a given time period. 

(3) The quantization sampling scheme, where 
the random variable itself is discretizcd by lumping its 
values in to class intervals. 

As a measure of information content, the 
decision theoretical concept of "expected informa· 
tion Joss," based on a linear loss function, was 
chosen. It includes the information loss due to both 
bias and variance of the estimate, and it may eventu· 
ally provide a framework for assessing the value of 
the information, as expressed in monetary terms. For 
the three discretization procedures outlined, general 
expressions were developed for the expected informa· 
tion loss of selected stochastic properties as functions 
of the sampling interval, the sampling period, and the 
mean, variance and autocovariance of the continuous 
process. 

Expressions for information losses were 
developed for estimates of mean, variance and auto· 
covariance without any assumptions about the distri· 
bution of the variable. For normal processes the 
information losses are found for estimates of the 
distribution function, of the probabilities of extremes 
and of the mean number of runs, the mean run length 
and the mean run sum. 

9.2 Conclusions 
It has been demonstrated that, for a large 

majority of hydrologic applications, the information 
Joss due to quantization of the variable is negligible 
compared to the losses introduced by sampling in 
time. This implies that when the purpose of the data 
collection is to make inference about stochastic para· 
meters, frequent sampling in time in order to reduce 
the time sampling loss is much more important than 
accurate measurements of the variable itself. 

44 

The general expressions developed is applied to 
a 20 year sampling period of the Davidson River near 
Brevard in N. Carolina in order to fmd the in forma· 
tion losses due to discrete sampling in this particular 
case. 

It is shown that an increase of the sampling 
interval from 2 hours up to 24 hours does not intro· 
duce any significant loss of information in estimating 
the mean based on discrete point samples. Therefore, 
mean estimates based on daily observations are virtu­
ally just as accurate as mean estimates based on hi­
hourly observations. Average sampling does extract 
the same amount of information about the mean as 
continuous sampling. 

The information loss in estimating the variance 
from a sample of instantaneous values does not 
increase significantly if the sampling interval is 
increased from 2 hours to 6 hours. However, an 
increase to a daily sampling interval increases the 
information loss with about 60 percent. Therefore a 
relatively frequent sampling rate is more important, 
when the variance is of interest. A similar conclusion 
can be drawn about estimation of the autocovariance. 
In contrast to estimation of the mean, average 
sampling gives rise to a significant loss of information 
in estimating variance and autocovariance. Even for a 
4 hour sampling interval, the bias due to averaging 
becomes a dominating factor in the information loss. 
For a 24 hour interval the information loss about the 
variance is three orders of magnitude larger than the 
corresponding loss for a daily instantaneous observa­
tion. So when variance and autocovariance of the 
continuous process are of interest, average sampling 
can be extremely detrimental. In the case studied 
here, a series of samples taken once a day contains 
considerably more information about these properties 
than a series of daily average values. Nevertheless, it is 
the latter series that is published; it seems that some 
consideration should be given to making sampled 
series of instantaneous values just as readily available, 
as these actually give a better description of the 
underlying process than the daily average values. 

For estimation of the probabilities of extremes 
and the mean run length, an increase of the sampling 
interval gives rise to significant loss of information 
both for discrete sampling and average sampling. The 



loss is particularly large if the sampling interval is 
increased from 2 hours to 4 hours, whereas an 
increase of the interval from 12 hours to 24 hours is 
associated with a relatively small increase of the infor­
mation loss. It is concluded that frequent sampling is 
essential for efficient extraction of the information 
about extreme and run properties. Thls is the case 
particularly for estimation of these properties at high 
exceedance and crossing levels, i.e., for estimation of 
the rarest events. 

A significant characteristic is the relatively 
small difference between point and average sampling, 
when the probabilities of extremes and the mean 
number of runs are considered. In these cases the 
major Joss of information evidently occur because 
observations with a large sampling interval are unable 
to detect the high frequency components in the 
process; the bias due to averaging is of less import­
ance. Average sampling, however, still gives rise to a 
bigger information loss than discrete point sampling 
with the same time interval. 

The information loss in estimating the mean 
run length and the mean run sum also rapidly in­
creases with increased sampling interval, but not 
nearly as fast as the case for the probabilities of 
extremes and the mean run length. In particular, for 
point sampling the information loss in the run length 
increases relatively little by increasing the sampling 
interval from 2 hours to 4 ho urs. So frequent 
sampling is of somewhat less importance here than 
when probabilities of extremes are of interest. On the 
other hand, the additional loss due to averaging is of 
relatively larger significance. 

The average sampling scheme always gives rise 
to an additional Joss of information about extremes 
and run properties as compared to discrete point 
sampling with the same interval; but the increase is 
much smaller than was the case for estimation of the 
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variance. It is again concluded, that a series of daily 
observations actually contains more information 
about the extremes and runs of the process than a 
series of daily average values. However, where a series 
of daily instantaneous observations has lost a relative­
ly small amount of information about the variance, 
the loss of information about extremes and runs is so 
large that very little may be inferred about these 
properties, based on such a series. 

9.3 Recommendations for Further Research 
The expressions for expected information Joss 

have been applied only in a demonstration of the 
effect of discretization on one particular stream flow 
series. A more systematic investigation of a wider 
selection of streams with different characteristics 
could be made. Other hydrologic series, such as 
temperature, sediment load or other water quality 
parameters might be analyzed. 

The information losses developed for extremes 
and runs are based on the assumption of normal pro­
cesses. Further research should be directed toward 
elimination of this assumption. 

The information content used here is always 
related to a specific parameter, not to the stochastic 
process as such. An information concept could be 
investigated that would include all or at least several 
of the most important parameters at the same time. 
The use of multidimensional loss functions and multi­
variate distributions of the sample estimates might be 
a possible approach to this problem. 

Finally, the extension of the decision theoreti­
cal approach by incorporation of realistic Joss 
functions can form a basis for the optimal choice of 
discretization procedure and sampling interval. Much 
research is needed to establish such loss functions as 
they are a basic factor in the evaluation of the worth 
of data and for rational investment in data collection 
systems. 
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APPENDIX A 

The bias, variance, and expected information 
Joss for estimates of selected stochastic parameter of 
Davidson River near Brevard, N. Carolina, are given 
below as functions of the sampling interval lit for 
both discrete point sampling and averaging sampling. 

The basic equations for the computations are found 
in the subchapters given in table headings. Graphical 
presentation of the information losses is given in 
Chapter 8. 

TABLE A.1 Estimation of Mean J.l 
J.l = 0.0 

Point Sampling, Subchapter 5.2 

6t hrs . Bias Variance *104 Inf . Loss *104 

2 0 3. 77 3.01 
4 0 3.78 3.03 
6 0 3.78 3 . 03 

12 0 3.84 3.07 
24 0 4.03 3.23 

TABLE A. 2 Estimation of Variance a2 

cr2 = 1.0 

Point Sampling, Subchapter 5.3 

6t hrs . Bias *104 Variance *104 Inf . Loss *104 

2 3 . 77 4.96 4.02 
4 3. 78 5.03 4 . 07 
6 3.78 5.09 4.12 

12 3 .84 5.68 4.59 
24 4.03 8.06 6.50 

Average Sampling, Subchapter 6 . 4 

M hrs. Bias *102 Variance *104 Inf . Loss *10 4 

Average Total 

2 0 3. 77 4.96 .04 
4 - 4.26 - 4.22 4.91 3.89 
6 - 7.91 - 7 .97 4.83 7 .87 

12 -17 . 79 - 17. 75 4.46 17.75 
24 -35.91 -35.87 3.66 35.88 

49 



TABLE A.3 Estimat ion of Autocovariance y (l2); lag= 
12 hours y(l2) = .452 

Point Sampling, Subchapt er 5 . 3 

M hrs. Bias *104 Variance *104 Inf . Loss *10 
Average Tota l 

2 2 .85 3 . 00 2. 44 
4 2.87 3.03 2 .46 
6 2 .87 3.05 2 .47 

12 2 .93 3.25 2.64 

Average Sampl ing, Subchapter 6 .4 

M hrs. Bias *104 Variance *104 Inf . Loss *10 
Average Total 

2 0 2 .85 3 . 00 2 . 44 
4 32.46 35 . 32 2 . 99 8 . 06 
6 41.39 44.24 2 .97 11. 26 

12 89.58 92.42 2.87 40 . 31 

TABLE A.4 Estimat ion of Autocovariance y(24); lag= 
24 hours y (24) = .032 

Point Sampling , Subchapter 5 . 3 

6t hrs. Bias *104 Variance *104 lnf. Loss *10 
Average Total 

2 3. 77 2 . 48 2 . 06 
4 3.78 2 .51 2.08 
6 3.78 2 .54 2. 11 

12 3 . 84 2.84 2 . 34 
24 4.03 4 . 03 3 . 29 

Average Sampling, Subchapter 6.4 

6t hrs . Bias *104 Variance *104 Inf . Loss *10 
Average Total 

2 3 . 77 2 . 48 2 .06 
4 79 . 20 82.92 2.45 35.16 
6 193 . 29 196.95 2.41 157 .42 

12 579 .03 582.54 2.24 582.48 
24 1421.47 1424 .64 1.94 1424 .64 
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TABLE A.5 Estimation of the second derivative of the 
autocovariance function y"(O) y"(O) = 
- .231 

Point Sampling, Subchapter 5.4 

lit hrs. Bias Variance Inf . Loss 
Average Total 

2 -.0026 .0220 .0177 
4 .1005 .0015 .0997 
6 . 1439 .0003 .1439 

12 .1895 .000017 . 1895 
24 .2078 .000001 · .2078 

Average Sampling, Subchapter 6 . 5 

Llt hrs. Bias Variance Inf. Loss 
Average Total 

2 0 - . 0026 .0220 .0177 
4 .1275 .1723 . 00144 .1723 
6 .1617 .2031 .00028 . 2031 

12 .1990 .2211 .000015 . 2211 
24 .2164 .2283 .000001 . 2283 
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TABLE A. 6 Estimation of probabilities of TABLE A.6 Estimation of probabi lities of 
extremes, Exceedance level = extremes - (Continued) 
0 .0, P(max X(t) <O.O) = .080 Exceedance level = 1 . 0 s t andard 

deviation 
Point Sampling, Subchapter 5.5 P(max X(t) <l .O) = . 434 

6t hrs. Bias Vari ance Inf. Loss Point Sampl ing , Subchapter 5.5 
Aver age Total 

6t hrs. Bias Variance Inf . Loss 
2 .020 .00304 .0081 Average Total 
4 .051 . 00069 . 0480 
6 .084 .00034 .0843 2 . 0226 .0096 .0116 

12 .150 .00008 .1508 4 .0818 . 0014 . 0773 
24 .200 .00001 .2008 6 .1281 .0005 .1281 

12 . 2021 .00008 .2021 
CJl Average Sampling, Subchapter 6 .6 24 . 2489 .000007 . 2489 l'V 

6t hrs . Bi as Variance Inf. Loss Average Sampl ing, Subchapter 6 .6 
Average Total 

6t hrs . Bias Variance Inf. Loss 
2 .020 .00304 .0081 Average Total 
4 . 0667 .1375 .00424 . 1331 
6 .1034 .1980 .00294 . 1979 2 .0226 .0096 . 01 16 

12 .1734 . 2672 . 00068 . 2672 4 .1165 .1922 . 0045 . 1915 
24 . 2368 .3363 .00015 . 3363 6 . 1701 .2595 .0022 . 2596 

12 . 2640 .3303 .0003 . 3363 
24 .3611 .4187 . 00004 .4187 

~'·~ . L .... ¥!:t~:t~·.· ·r"f;;~~:~:,::: £d \Mt ,._! 1 1 



TABLE A.6 Estimation of probabil ities of TABLE A.6 Es timation of probabilities of 
extremes - (cont inued) extremes - (continued) 
Exceedance level = 2.0 standard Exceedance level = 3.0 standard 

deviation deviation 
P(max X(t)<2. 0) = .861 P(max S(t)<3 . 0) = .988 

Point Sampling, Subchapter 5.5 Point Sampling , Subchapter 5.5 

lit hrs . Bias Variance Inf. Loss lit hrs. Bias Variance Inf. Loss 
Average Total Average Total 

2 .0057 .00130 .00174 2 .00046 .000011 . 00006 
4 .0286 . 00015 .0280 4 .00259 .000001 .00254 
6 .0437 .00005 . 0437 6 .00394 .000000 .00394 

12 .0656 .000006 .0656 12 .00585 .000000 .00585 
CJ1 24 .0783 .000000 .0783 24 .00694 .000000 . 00634 w 

Average Sampling, Subchapter 6.6 Average Sampling, Subchapter 6.6 

lit hrs. Bias Variance Inf . Loss lit hrs. Bi as Variance Inf. Loss 
Average Tot al Average Total 

2 .0057 .00130 .00174 2 .00046 .000011 . 00006 
4 .0457 .0664 .00033 .0663 4 .0048 .0064 . 000002 .00640 
6 .0652 .0869 .00012 .0869 6 .0068 .0083 .000001 .00830 

12 . 0962 . 1096 .00001 .1096 12 .0096 .0102 .000000 . 01024 
24 . 1231 .1290 .00000 .1290 24 . 0112 .0113 .000000 .01131 



TABLE A.7 Estimation of mean number of runs TABLE A.7 Estimation of mean number of runs -
E_r. day, Crossing level ~ 0.0 (continued) 
N0 _0 = .917 runs per day Crossing level = 1 . 0 standard 

deviation 

Point Sampling, Subchapter 5 .6 
N

1
_
0 

= .556 runs per day 

6t hrs. Bias Variance Inf. Loss Point Sampling, Subchapter 5.6 
Average Total 

tot hrs. Bias Variance Inf. Loss 
2 -0.0392 . 091 .0762 Average Total 
4 -0.2338 .010 .2292 
6 -0.3558 . 003 .3559 2 - . 0237 .0335 .0290 

12 -0.5289 .0003 .5289 4 -.1418 .00386 .1388 
24 -0.6277 .0003 .6277 6 -.2158 .00116 .2159 

C.H ..... 12 -.3208 . 00014 . 3208 
Average Sampling , Subchapter 6.7 24 -.3807 .00001 .3807 

lit hrs. Bias Variance Inf. Loss Average Sampling, Subchapter 6.7 
Average Total 

6t hrs . Bias Variance Inf. Loss 
2 - .0392 .091 .0762 Average Total 
4 - .3037 -. 4 789 .023 .4781 
6 -.4154 - .6137 .009 .6137 2 - .0237 .0335 .0290 

12 -.5771 -.7328 .0014 .7328 4 - . 1924 - . 2963 .0083 .2960 
24 - .6888 -.8249 .0002 .8249 6 -.2648 -.3799 .0033 . 3799 

12 -.3712 - .4559 .0004 .4559 
24 -.4516 - . 5140 .00005 . 5140 



TABLE A.7 Es t imation of mean number of runs - TABLE A.7 Estimation of mean number of runs -
(continued) (continued) 
Crossing level = 2.0 standard Crossing level = 3.0 standard 

deviations deviations 
N2 . 0 = .124 runs per day N3 . 0 = .010 runs per day 

Point Sampling, Subchapter 5 .6 Point Sampling , Subchapter 5.6 
--

H hrs. Bias Variance Inf. Loss L'lt hrs. Bias Variance Inf. Loss 
Average Total Average Total 

2 -.0058 .001667 .00187 2 -.000436 . 000011 .000054 
4 -.0316 .000192 .03095 4 -.002598 .00001 .002540 
6 - . 0481 .000058 .04816 6 -.003954 0 .005876 

8: 12 - .0716 .000007 .07159 12 -.005876 0 .005876 
24 -.0849 .000001 .08495 24 -.006973 .006973 

Average Sampling, Subchapter 6 . 7 Average Sampling, Subchapter 6 . 7 
--

lit hrs. Bias Variance Inf. Loss L'lt hrs. Bias Variance Inf. Loss 
Average Total Average Total 

2 -.0053 .001667 .00187 2 -.000436 .000011 .000054 
4 - .0482 -.0698 .000365 .0698 4 -.0046 -.006204 .000002 .006204 
6 - .0669 -.0895 .000127 .0895 6 - .0064 - . 00789 1 .007898 

12 -.0943 -.1079 . 000010 .1079 12 -.0087 -.009416 0 .009416 
24 -. 1141 -.1201 .000000 .1201 24 -.0099 - . 0101 0 .010107 
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TABLE A. 8 Estimation of mean run l ength 
Crossing level = 2. 0 s t andard 

deviations 
r2 .0 = 2 . 20 . (time uni t = 2 hrs) 

6t hrs. 

2 
4 
6 

12 
24 

6t hrs . 

2 
4 
6 

12 
24 

Point Sampling , Subchapter 5 .6 

Bias Variance 
Average Total 

.3010 

.8214 
1.4406 
3.0294 
4. 7989 

.7058 

.2046 

.1318 

.0694 

.0171 

In£. Loss 

. 6139 

. 7959 
1.4405 
3. 0294 
4. 7989 

Average Sampling, Subchapt er 6.7 

Average 

1.036 
1.699 
3 . 308 
5 . 233 

Bias 
Tot a l 

. 3010 
2 . 7437 
4. 7718 
8 .3479 

16 .684 

Variance 

. 7058 
2.8831 
4.9851 
4.5995 
9 . 2680 

Inf . Loss 

.6139 
3. 0777 
5.0228 
8.3490 

16.6840 

TABLE A.8 Estimation of mean run l ength -
(continued) 

6t hrs. 

2 
4 
6 

12 
24 

6t hrs. 

2 
4 
6 

12 
24 

Crossing level = 3.0 standard 
deviations 

L3 _0 = 1 .59 . (time unit = 2 hrs) 

Point Sampl i ng , Subchapter 5 .6 

Bias 
Average Total 

.2176 

.5938 
1. 0413 
2 .1898 
3.4689 

Variance 

.3688 

.1069 

.0688 

.0362 

.0089 

Inf. Loss 

.3376 

.5690 
1.0412 
2 .1898 
3 .4689 

Average Sampl ing, Subchapter 6 . 7 

Average 

. 7439 
1. 2166 
2 . 3526 
3.6716 

Bias 
Total 

.2176 
1.9756 
3.4289 
5.9607 

11. 7784 

Variance 

. 3688 
1.5000 
2.5838 
2 . 3771 
4 .6449 

In£. Loss 

.3376 
2 .0915 
3 .5283 
5 .9610 

11.7784 

.-.·-: :"f-...-~~ ......... 



TABLE A.9 Esti mat ion of the mean r un sum TABLE A.9 Estimation of the mean run sum -
Crossing level = 2.0 standard (continued) 

deviation Crossing level = 3.0 standard 
s2 _0 = . 82o. (time unit = 2 hrs) deviations 

s3 _0 = .45o . (time unit = 2 hrs) 

Point Sampling, Subchapt er 5.6 
Point Sampling, Subchapter 5 . 6 

fit hrs. Bias Variance Inf. Loss 
Aver age Tot al 6t hrs. Bias Var iance Inf. Loss 

Average Tot a l 
2 . 1122 .0981 .1051 

.3063 .0285 .2895 2 .0615 .0295 .0395 
6 .5373 .0183 . 5372 4 . 1678 . 0086 . 1576 

12 1.1299 .0096 1. 1298 6 .2944 .0055 . 2944 
C)1 24 1.7898 .00238 1 . 7898 12 .6192 .0029 .6192 
-.] 

24 .9808 . 0007 .9808 
Average Sampling, Subchapter 6 .7 

Average Sampl ing, Subchapter 6.7 
fit hrs . Bias Variance Inf. Loss 

Aver age Tot al 6t hrs. Bias Vari ance Inf . Loss 
Average Total 

2 . 1122 .0981 . 1051 
4 . 3729 .9875 . 3734 .9637 2 . 0615 .0295 .0394 
6 . 5925 1 .6641 .6063 1.6593 4 .2021 . 5639 . 1108 . 5037 

12 1.0510 2.6526 .4644 2.6525 6 .3195 .9004 . 1782 .8854 
24 1. 3507 4 . 3067 .6175 4.3067 12 .5591 1.4165 . 1331 1. 4165 

24 .6966 2.2347 .1672 2 . 2347 
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period, and the mean , variance and autocovariance of the 
continuous process . A stream f low series is analyzed to 
show the applicabi lity and potential of the approach. The 
loss due to quantization is found to be neglible. A small 
sampling interval is essential to prevent a large informa­
tion loss about extremes and runs, but is of less impor­
tance for estimation of mean and variance . Average sampl­
ing introduces significant losses of information due to 
the biasing effect inherent in the sampl ing procedure . 
With the exception of the mean , a sample of instantaneous 
va l ues contain more information about the parameters- in­
vestigated than a sample of average values , taken over the 
same sampling interval . 
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