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ABSTRACT 

Surface water storage reservoirs in karstified limestone areas, as well as in some other geological forma­
tions, are often connected to significant natural underground storage capacities . The underground storage repre­
sents a cost-free augmentation of the sur face storage. A mathematical model of optimal reservoir managemen~ 
under these conditions was devel oped. The mode l is based on t he assumption ~hat water value to various users 
during different time periods of the year were known. Performing several l evels of optimi~ation by dynamic pro­
gramming , the optimal policy of water rel ease was obtained for hydrologic sequences, either observed or generated. 
The opt imal policy obtained by this model can be used to establish operational rules and to find the opt i mal 
reservoir size. 

The oversimplification of the contribution of the underground storage to the sur face reservoir is to sum 
the corresponding storage capacities. However, a mathematical formulation of the physical reali t y is needed. An 
op~imi~ation model and a mathematical descript ion of the exchange f l ow between the two stor aae subsystems were 
developed also . 

Theories associated with the recession curve of the river hydrograph were often founded on the linear 
relationship between the river flow and the content of the underground storage. An i mpl icit assumpt ion of the 
model was that the water content of the surface subsystem remains unchanged over an ext ended period of ti~e. 
When a surface reservoir is constructed, the above assumpt ion is no longer valid . Under these condit ions , a 
mathematical formulation of the coupled s t orage was developed when both storages change with time. As in the 
derivation of the hydrograph recession curve, it is assumed that the flow from one storage to the other is 
determined by their s t at es . 

The state of the underground subsyst em of porous karstified limestones is usually gr eatly affected bynatural 
recharge to the aquifer. The laws governing the recharge are di st i nct from t hose of classical river basins . 
For that reason, a mathemat ical model for r echarge to the karstic aquifer was developed. A model is based on 
the fact that the autoregressive-moving average (ARMA) model was a valid descript ion of the river flow when the 
system is assumed linear. A method of estimating the parameters of the recharge model from the ~~ model is 
given . 

FOREWORD 

In providi ng storage capacity for water regulation either surface or underground space is used. For the 
surface storage now reservoirs are constructed or t he existing storage space is transformed and used for flow/ 
regulation. For the underground storage, aquifers have been used for f low r egulation by water recharge recently. 
However, the use of rock voids for large storage capacity still awaits various practical methods of solution . 
Recently , the combined use of surface and underground storage capacities has been studied for physically non­
interconnected storage capacities. By their management they are treated as operational ly combined storage 
capacities. 

In developing controlled underground storage, several important problems must be solved. Dimensions of the 
to·tal groundwater environment participating i n the storage has to be estimated, overall porosity and its dis­
tribut ion evaluat ed . Because the time factor is important i n filling and emptying the underground storage voi ds, 
t he effective porosity needs to be determined. The effective porosity is defined as that part of the total 
volume of voids, which can be used during usual time interval s of recharge or emptying of groundwater voids. 
Because difficulties exist in estimating the above characteristics , the study of complex underground storage is 
more difficult than the st udy of surface storage. 

One of the least studied problems is the use of physically coupled surf ace and underground storage capacities. 
In this combined syst em, any fluctuation in surface storage is automatically reflected in l evel fluctuation~ of 
underground ~torage, because the two storage capacities physically interact . This paper by Dr. D. Isailovic 
refers to the joint use of these physically i nterconnected, surface and underground storage capacities. 
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The karstified limestone and dolomite formations are among the most characteristic geological formations in 
which surface and underground storage capacities can be simultaneously developed and operated. Their porosity 
is composed of: different sites of rock fissures, dissol ved channels and caves, voids in gravel and sand de­
positions, and voids in depositions of other materials inside the old fissures, channels, and caves. Important 
factors in studying the underground storage of karst formations is the relationship between the future range of 
surface and underground storage level fluctuations and the history of tectonic movement of large karst blocks. 
In cases of deep karstification, the submerged karstified blocks may contain a large percentage of voids, and 
may have a largo spacial extention. Up to five percent of the total rock space may be composed of voids, to be 
available for water storage . For a shallow karstification or for lifted karstified blocks, the percentage of 
voids and the total space involved are limited to a porosity of up to one percent. 

In developing an underground storage for flow regulation in karst formations , two types of alternatives 
should be considered. Interconnected sur face and underground storage capaci t ies are developed as the primary 
alternatives whenever feasible, because they may be easy to accomplish economically. The control of water leak­
age from both capacities is usually a precondition for implementing these alternatives. When sites of economical 
joint surface and underground storage development in karst regions are exhausted, or when the potential water 
leakage is assessed to be both of a high risk and of large quantities, alternatives of using only the underground 
storage should be studied. 

In many cases the l arge karst springs occur at the contact between highly karstified limestone and an 
imperious formation. The spring water might have eroded the imperious formation in a triangular shape, wi th 
water drainage at its lowest point. lt may then be feasible to grout a rock mass above the spring ~s an under­
ground impervious dam), which will raise the water level in the karst formation as high as it may be economically 
feasi ble. The water outflow is then controlled by an outlet conduit. In some cases this control conduit may be 
located much below the spring level. Sufficient ly large karst water stoTage could thus be created . The exper­
ience with coupled surface and underground karst storage developments may produce a sufficient scientific 
information to be applied also to developments of pure underground karst storage capacit ies. 

The basic problem in utiliting the underground karst storage space is to involve as large a rock mass in 
storage as possible. If the rock mass between the upper and lower fluctuation levels is 20-50 times as large as 
the surface storage capacity , then 1-2 percent of the effective rock porosity will produce an underground stora~ 
capacity of 20-100 percent of the surface storage capacity. 

While a surface storage capacit y reacts instantaneously to opening of outflow outlets or to water inputs , 
the underground storage capacity has a time-delaying effect . To recharge water into the voids or to take water 
out of voids of an underground pervious formation, time is necessary. Therefore, any coupled underground stor­
age to a surface storage must take time delays into account in one way or another. This problem has been treated 
by Dr . D. Isailovic in a particuiar way, namely by a relationship between the interchange of water flow between 
surface and underground storages to total storage volume. The response hydrographs to changes in the relative 
storage levels of two capacities indirectly incorporate these time delays. The basic problem of physically 
coupled surface and underground storage capacities is how to estimate th.e response properties of underground 
storage to surface storage changes and how to develop mathematical models for the operation of two capacities as 
a unit. This has been presented in the paper. Several problems need to be resolved, namely how large will an 
underground storage capacity be to a given surface storage, what the effect of underground storage will be on 
floods after the surface reservoir is constructed, namely whether f l ood peaks coming out of karst formation into 
surface storage through large karst springs will be increased or decreased by the underground storage . This 
ques•ion of floods will reflect on design of reservoir spillway capacity and downstream flood control. Further­
more, the question arises for the influence of increased underground storage and longer water time residence in 
karst formations on water quality. 

In presenting this paper by Dr. D. Isailovic, it should be stressed that the problem of finding proper 
solutions to a joint operation of surf ace and underground storage capacities is not only related to karst forma­
tions. Other formations like sandstones, some volcanic rocks, large deposits of sand and gravel , and many 
fissured rocks can also produce a significant underground storage capacity by surface reservoirs. In practical 
terms, the problem is how large the percentage of an underground storage capacity should be in terms of surface 
storage capacity for the underground storage to be considered as a coupled storage to the surface storage, 
rather than being ignored or simply added to the surface storage. 
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Chapter I 

INTRODUCTION 

1-l Preliminary Remarks 

Efficient management of water resources calls for 
a set of hierarchical decisions concerning every spec~ 
fie project. Surface reservoirs appear to be a domi­
nant component of almost every important water resource 
system. The reservoir operation is regarded as one of 
the most important aspects of the storage analysis 
since the system performance depends, to a large ex­
tent, on the way the reservoir is operated. This 
analysis is a part of the process by which the reser­
voir size is selected. 

Three groups of approaches are commonly used to 
analyze a storage capacity: empirical, experimental, 
and analytical. The empirical method refers to the 
application of the mass-curve analysis (Rippl, 1883J 
to the observed streamflow sequence. The experimental 
method is based on the Monte Carlo technique in gene­
rating a large number of new hydr ologic samples . The 
mass-curve analysis is then applied to these sampl es 
to assess the storage characteristics. The analytical 
method utilizes mathematical theories to derive the 
statistical properties of the most important variables 
that characterize the storage. 

An instructive example of water resources 
development under adverse conditions is construction 
of reservoirs in limestone regions. Karstified lime­
stone , as well as some other geological formations, 
are known to ha.ve high water transmissibility. As a 
result, significant natural underground storage may 
be directly coupled with the surface reservoirs. 
Examples of relatively large underground storage capa­
bilities coupled with man-made l akes are: the Lake 
Powell on the Colorado River (USA), (U . S. Bureau of 
Reclamation, 1974), the Libby Reservoir on the Kootenai 
River (Montana, USA) [Coffin, 1970], the Lake Nasser 
on the Colorado River (USA), [U. S. Bureau of Reclama­
tion, 1974), the Libby Reservoir on the Kootenai River 
(Egypt, Sudan), and the Lake Bileca on the Trebisnjica 
River (Yugoslavia) [Mikulec and Trumic: 1970]. The 
account of effects of natural underground storage 
capacity is virtually cost free. In addition, the 
water of the underground storage is subject to minimum 
evaporation. 

A sound basis for evaluating the degree of use­
fulness of a storage project is a monetary performance 
index which includes economic, social, and political 
criteria. With the project output quantified, an 
optimization scheme is usually applied to choose the 
best alternative from a set of feasible actions. 
These techniques frequently combine one or more methods 
of storage analysis with an extensive use of computers. 
Application of the optimization methods to analyze 
storage operation under specific conditions is the 
subject of this study. 

1-2 Study Objective 

The objective of this study was to develop a 
mathematical model for determining the optimal policy 
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of water use from a single, multi-purpose surface 
reservoir which is physically coupled with a natural, 
fast responding underground storage space of signifi­
cant capacity. This objective is accomplished by a 
dynamic programming scheme . 

In order to account for the contribution of the 
underground storage, an appropriate mathematical 
description of the exchange of flows between the two 
interconnected storages was necessary. The usefulness 
qf presently available models for groundwater flow in 
an optimization procedure may be severely limited, 
primarily because they require extensive computations. 
For t his reason, simple mathematical models are deve­
loped herein. This by no means implies that more 
complex , other groundwater flow models are precluded 
in achieving the objective. 

Large quantities of water may flow out of a karst 
aquifer. Since aquifers are fed by natural recharge, 
the intensity of recharge may be very high. This is a 
characteristic of aquifers in fissured rocks. In 
addition to determining the optimal policy, a recharge 
model for drainage basins in karstified limestones 
and dolomites was developed as a complementary part of 
the flow exchange model. 

In the subsequent analysis the underground storage 
is assumed directly noncontrollable, that is, there is 
no controllable component entering into or coming out 
of the underground storage. The underground storage 
is controlled indirectly. Besides being dependent on 
natural stochastic inputs to the system, the under­
ground storage depends on the behavior of the surface 
reservoir controlled by making decisions concerning 
its water release . Thus, the exchange of flows be­
tween the two interconnected storages is affected by 
the surface storage operation. 

1-3 Scope and Organization of the Study 

The material presented in this study is organized 
as fol lows: Chapter II is a brief review of litera­
ture. Chapter III defines the hydrologic system dealt 
with in the underlying assumptions. The next four cha~ 
ters repr esent detailed analysis of components of t he 
model used in the study: Chapter IV, with the mathe­
matical model for the underground storage; Chapter V, 
with the mathematical formulation of the hydrologic 
system and a model for the recharge; Chapter VI, 
with the description of the system identification under 
frequently encounter ed conditions; and Chapter VII, 
with the dynamic programming solutions to the resource 
a llocation problem with equality and inequality 
constraints. Chapter VIII describes procedures and 
results in the application of the models, with two 
sample problems under slightly different hydrologic 
conditions solved. Finally, Chapter IX presents 
concluding remarks and recommendations for further 
study. 
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Chapter II 

BRIEF LITERATURE REVIEW 

2- 1 Reservoir Storage 

Reservoirs for flow regulations hav·e been used 
for several thousand years. The first attempt to 
determine the size of a reservoir by a scientific ap­
proach can be traced back only to the la.st century. 
The foundation of water storage analysis was laid 
by W. Rippl [1883). The size of the storage required 
for water supply of Vienna was critically examined by 
the method which soon became known as the Rippl-diagram 
method. The technique has been used extensively 
throughout the world since. The method is based on 
the use of a time series realization, i.e., an observed 
sequence of streamflow data representing inflow 
into the reservoir. The storage capacity determined 
by the Rippl-diagram method is that which provides a 
sufficient supply over the p.eriods of critically low 
f lows within the observed sequence. 

No objection can be made to the use of the 
observed streamflow sequences, for in many instances 
it is the only, and cetainly the best, source of in­
formation available. What can, however, be objected 
to is the manner in which the observed sequence is 
used. It soon became evident that the Rippl method 
when applied to .an observed sequence of str eamflows 
may prove to be inadequate since the determined reser­
voir size will be correct if the streamflow observa­
tions during the reservoir lifetime were identical to 
the sequence upon which the evaluation of the reser­
voir size was based. The probability that a realiza­
tion of a continuous time process will repeat i t self 
identically in any subsequent sequence is zero . Thus, 
the selected reservoir size may be incorrect. To 
account for the stochastic variation of annual flows, 
it was suggested as early as the beginning of this 
century [Hazen, 1914) that probabilistic concepts be 
applied to streamflow . At that time pro·bability was 
not regarded as a legitimate branch of mathemat ics 
(Feller, 1968], so that half of the century passed 
before Hazen's idea received widespread r ecognition 
and application. 

Among early developments of the theory of reser­
voir storage, which utilized probabilistic methods to 
determine water storage capacity, was that of Hurst. 
The long time studies of the Nile River led to the 
formation of an expression [Hurst; 1~51, 1965] re­
lating the ratio of the mean range , R, and the standard 
deviation of annual flows, o , to the time period of N 
years over which a sufficient water supply is to be 
provided by a storage capacity, namely known as the 
Hurst equation, 

R/o" 0.61 N° · 72 . (2-1) 

Even though this expression was derived from the ob­
served data of several natural phenomena, it has become 
controversial. 

Advances in the theory of probability and mathe­
matical statistics and continuing att empts to apply 
them to practical engineering brougth about new ideas 
associated with the analysis of reservoir storage . 
There is a large number of references contributing to 
the development of new methods authored by Feller, 
Spitzer, Hurst, Morran, Lloyd, Annis , and many others. 
It is not the objective of this review to cite all 
those who have contributed significantly i n bringing 
the tneory of water storage to its present level. 

A summarized description of a class of probabilis­
tic problems that usually arise in the theory of 
storage was given by Morran [1959) . Another article 
dealing with the same subject is due to Lloyd [1967) . 
Probabilistic treatment of hydrologic time series that 
are determinative factors of the reservoir size and 
its efficient operation, such as surplus, deficit, 
range, run, etc., is described by Yevjevich [1965, 
1972c], and Salas [1972] . Application of the probabi­
l istic models within the framework of queuing theory 
was described by Langbein [1958]. Later, Fiering 
[1962, 1967) combined queuing theory and simulation 
in the optimal reservoir design. More details con­
cerning various techniques of probabilistic reservoir 
analysis are summarized by Roefs (1968]. 

A particular branch of applied mathematics that 
has provided tools in planning and managing of water 
resources systems is mathematical optimization. Pro­
babilistic and statistical methods have improved, and 
their application to the description of the stochastic 
nature of hydrologic processes has received widespread 
recognition. The advances in computer technology 
made economic the processing of l arge amounts of data 
within a short time. As a result, not only was it 
feasible to efficiently use the observed data, but 
opportunities have been created for generating new 
sequences of data according to the statistical proper­
ties and dependence structure i nferred from historic 
data (Yevjevich, 1972b]. Optimization models combined 
with probabilistic methods and data generating techni­
ques , all based on computer capability, were seen as 
potentially promising devices in analyzing various 
aspects of water resources systems . 

Various optimization schemes , linear and non­
linear, are applied to water resources at present. A 
large number of problems in water resources belong to 
the class of problems involving sequential decision 
making, and these in turn " ... lend themselves best to 
analysis and solution through the application of the 
dynamic progranuning ," [Buras, 1972]. Consequently, 
as pointed out by Hall and Dracup [1970) and Buras 
(1972), dynamic programming was demonstrated to be a 
particularly useful technique in analyzing water 
storage problems. 
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An extensive review of the methods and techniques 
applied to reservoir planning and management is given 
by Reefs [1968] and Croley [1974]. Numerous examples 
of the application of different optimization schemes 
to water resources systems of various sizes are given 
by Hall and Oracup [1970) and Buras [1972). Butcher 
et al. [1969) used a dynamic programming scheme to de­
fine the optimal strategy of installation of a sequence 
of water supply projects. Buras [1963] outlined 
methods employed to obtain the optimal use of pumped 
underground aquifer operated in conjunction with a 
surface reservoir. Burt [1974) devised a method for 
attaining the optimal management of groundwater re­
source in view of decisions concerning the timing and 
the location of surface water devel opments . Hall and 
others [1963, 1964, 1969) applied dynamic programming 
to problems of reservoir design and operation. Gen­
erated sequences of dependent annual streamflow were 
first used by Hall and Howell [1963] for analysis of a 
single purpose reservoir . The method was later called 
"generation-deterministic optimization-regression," 
[Reefs, 1968], and also "implicit stochastic optimiza­
tion" (ISO) [Croley, 1974). 



Performing the optimization over each of a number 
of generated s amples of data, several optimal returns 
and the optimal policy corresponding to each of t hem 
can be determined. From those it is possible to deter­
mine t he following: (1) the operational rules, and 
(2) the risk of fail ure to satisfy cert ain l evels of 
the demand or the risk of failing to generate a given 
level of return. They also suggest that the selection 
of the optimal reservoir size should be based upon the 
results of computation performed f or several arbitra­
rily chosen physically feasible reservoir sizes. It 
should be noticed that this method uses a deterministic 
optimization procedure to analyze t he system with a 
stochastic input, i.e . , a generated sequence of stream­
flow. This perhaps explains the diversity of names 
gi ven to the method described. 

Even though dynamic programming has been found 
to be well-suited for the analysis of many water re­
sources systems , not all problems can be solved by 
this method because of limitations of the technique. 
The most frequent obstacle f or the use of dynamic opti­
mizat ion appears to be excessive comput er t ime and, 
particularly, computer memory r equirements . Much work 
has been done to alleviate the burdens usually asso­
ciated with stochast ic dynamic optimization. Heidari 
et al. [1971] described a method of discrete dynamic 
optimization which consi ders a narrow, arbitrarily 
chosen, band of feasibl e policies. The best policy 
constrained by this band is select ed by the method of 
dynamic programming. Then , a new band around the 
optimal pol icy is formed and a new optimal pol icy 
corresponding to the new band is determined. The pro­
cess is r epeated until the optimal policy obtained for 
a given band remains unchanged for two s uccessi ve 
i terations. Although the procedure is essential ly 
iterative, it is claimed to be very efficient in terms 
of both computer time and memory requirements, parti­
cularly for multidimensional systems. Anot her model 
with a simi lar objective was devel oped by Croley [1974] 
proposing the method of sequential stochastic optimi­
zation as an alternative to the existing methods. In 
essence it combines two of the most frequent ly used 
forms of dynamic stochastic optimization, eliminating 
some of their disadvantages. The met hod is particu­
larly suit able for actual operation of water resources 
systems. 

In spite of the fact that the literature concern­
ing storage problems is prolific, no attempt has been 
made to account for the natural underground storage 
effects in analyses of the surface reservoir planning 
and operation, when the two stor ages are physically 
coupled. In some circumstances, consideration was 
given to the bank storage but only i nsofar as deter­
mining its magnitude -- the Lake Powell of the U. S. 
Department of t he Interior [1965], or to ascertain the 
response of the basin storage to changes of the sur­
face reservoir-- the Libby Reservoir, Coffin [1970]. 

2-2 Specific Problems Rel ated to Karst 

Karst regions are characterized by unusual 
features and extreme conditions which do not allow 
conclusions as to what is typical or average for many 
properties of carbonate rock (Stringfield and Le Grand, 
1969] . Specific characteristics of karst watersheds 
such as those re lated to scarcity of sur face streams 
and rugged topography were developed by natural pro­
cesses as a result of the presence of soluble rock, 
carbonic acid, ample precipitation, rock f is-sures, 
and favorable topographic settings [LeGrand , 1973] . 
As in almost all catchments the time of extensive 
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water occurrence in karst does not coincide with the 
hi ghest water demand . However, the problems are here 
sharply accentuat ed by specific relationships between 
water and soil. 

High infiltration and l ow surface runoff are 
hydrologic characteristics of most karstlands 
[Sweeting, 1973] . As a consequence, underground flows 
are large , often concentrated, sometimes reachi ng the 
proportions of underground r ivers . The underground 
channels may converge and form extremely l arge springs, 
as frequently occurs in the Mediterranean Karst. Karst 
rivers can disappear as suddenly as they appear. 
Another peculiar feature of kars t regions are karst 
plains (poljes) which are enc l osed valleys with no 
surf ace drainage. They usually act as ret ention basins 
during rainy periods or snowmelt and experience extreme 
water shortages during dry seasons . 

It is clear that when the methods of classical 
groundwater hydrology, developed f or nonfissured 
rocks, are used for evaluation of karst water r e­
sources, the- results may be misleading [Sweeting, 1973). 
For that reason, as realized long ago, new methods ot 
investigation i n karst ~re needed. Many controversies 
concerning karst underground water were centered about 
the question, which has yet to be resolved, of the 
exist ance of a water table . Nevertheless, t he dis­
tinctive nature of karst hydrology was emphasized at 
the Dubrovnik Symposium on Hydrology of Fractured 
Rocks [Sweeting , 1973). 

Due to the descri bed geologic and hydrologic 
condit ions , economic and engineering problems related 
to karstlands can , in summary, be said to resul t from: 
(a) scarcity of surface water supplies; (b) poor 
predictability of underground water resources; (c) 
instability of cavernous grounds ; (d) leakage of 
surface reservoirs; and (e) unreliable waste dis­
posal . To resolve these problems, it was necessary to 
understand environmental relationships which determine 
the effects of engineering actions on the system. 
These had to be learned for every particul ar case 
through carefully p l anned, often elaborate , exploratory 
work and actual construction of water resources sys­
tems. ~1any aspects of the encountered fie ld problems 
are described in the proceedings of the above mentioned 
symposium. Additional recent references concerning 
karst hydrology and geology can be found in publica­
tions by Stringfield and LeGrand [1969], and Sweeting, 
[1973]. Extensive bibliography in the subject matter 
is given by Herak et al . [ 1973] . 

During the last 25 years, a number of dams was 
constructed in regions of Yugoslav Karst [Mikulec and 
Trumic~ 1972] , and others are under construction or on 
the drawing board. Much experience concerning con­
struction of reservoirs under karst conditions has 
been gained . One important aspect of this experience 
is how to successfully cope with potentially unusually 
large reservoir l eakage, which was sometimes thought 
to be sufficient reason to rule out the construct ion 
of reservoirs under these conditions. In recent years 
i t was realized that more comprehensive p l anning and 
management of water resources systems in karst is 
needed. The realizat ion led to a joint U. S. 
Yugoslav research project currently underway. \~'ithin 
the framework of this project , it is desired to 
investigate the aspects of underground natural storage 
physically coupled with the surface storage. This is 
intended to contribute t o a better understandi ng of 
effect s of t he natural underground storage space on 
surface storage in karst areas. 



Chapter Il l 

SYSTEM DESCRIPTION AND GENERAL APPROACH TO THE PROBLEM SOLUTION 

3-1 Description of the System 

Consider an overall hydrologic system consist­
ing of t wo subsystems: a surface subsystem and an 
underground s ubsystem which are physically interrelated 
in such a manner that water can flo~<.• from one subsystem 
t o another in both directions. A simplified schematic 
representation of such a system is given in Fig. 3-1 , 
where the surface subsystem is denoted by S and the 
underground subsystem by V. The dashed line in Fig. 
3-1 can be thought of as the boundary of the total 
system denoted by n. 
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Fig. 3-1 . Schematic Repre~entation of a Hydrologic 
System Composed of Two Subsystems. 

The water budget equation of the overall system 
can be expressed by the simple relation 

(3-1) 

in which Qi (t) = the rate of input into the system, 

~(t) = the rate of output from the system, and 

dn(t) = the rate of change of the system storage , all 
three as continuous functions of time t. 

I 
I 
I 
I 

The total input into the system, Qi (·), can be 

represented as the sun of its four major components as 
depicted in Fig. 3-1, namely 

Qi(t) = qc(t) + qd(t) + qp(t) + qr(t), (3-2) 

in which qc(t) = the direct channel inflow into the 

surface subsystem, qd(t) = the direct surface i nflow 

into the surface subsystem, q (t) = the inflow re-
p 

sulting from precipitation over the water storage sur­
face area, and qr (t) = the recharge to the underground 

subsystem. 

Similarly , total output from the system is the 
sum of the components 
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+ q (t), 
g 

(3-3) 

in which qb(t) = the channel outflow from the surface 

subsystem, qe(t) = the evaporation from the water su~ 

face area of the surface subsystem, and q (t) = q (t) g gs 
+ q (t) = the loss of water from both the surface sub­gu 
system, q (t), and the underground subsystem, q (t), gs gu 
respectively . 

Under the given description of the system, the 
rate of change of the system storage, dO(t)/dt, at the 
right-hand side of Eq. 3-1, consists of a swmnation of 
the corresponding changes of the surface subsystem 
dS(t)/dt and the underground subsystem dV(t)/dt, 
namely 

dO(t) = . ..:!_ [ S(t) + V(t ) ] = dS(t) + dV(t) . (3_4) 
dt dt dt dt 

In Eq. 3-4 S(t) ~ the volume of water content in the 
surface subsystem, and V(t) = the total vol ume of 
water stored in the underground subsystem. 

Substituting Eqs. 3-2 through 3-4 into Eq . 3-1, 
the basic water budget equation becomes 

qc(t) + qd(t) + qp(t) + qr(t) - qb(t) - qe(t)-qJt) 

dS(t) dV (t) (3-5) 
~+~ 

In addition to the information concerning the 
components of surface flow and atmospheric events, a 
description of a compl ex hydrologic system also re­
quires that the behavior of the underground subsystem 
be descr ibed. ~lore specifically, the last term in 
Eq. 3-5, dV(t)/dt, must be mathematically defined in 
such a way that it describes the response of the under­
ground subsystem to the other flow components . 

Sufficiently accurat e models of the underground 
flow available at present appear to be very complex 
and somewhat burdensome to compute [Freeze, 1971). In 
addition , under the condition of nonexistent regular 
water table i n karstified aquifers [Sweeting, 1973], 
these model s are inappl icable. Thus, a simplified and 
convenient model is necessary. 

The continui ty condition of the underground sub­
system must be satisfied, namely 

..!V ff-) 
q (t) - q (t) - q (t) .. ~dt ' 

r u gu 
(3-6) 

where qu(t) = the exchange flow between the surface 

and underground subsystems, q (t) = the water loss gu 
from t he underground subsystem, while qr(t) and 

dV(t)/dt are as defined previously. The mathematical 
formulation of Eq . 3- 6 is depicted in Fig. 3-2. 

Both the recharge to the underground aquifer, 
q (t), and the loss, q (t ), are non-negative time 
f&nctions. The latterg~omponent is virtually unmeas-
ured and hopefully insignificant. Hence, it is 
oft en dropped from computation. This need not be true 
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Fig. 3-2. Schematic Representation of the Flow 
Components of the Underground System. 

under all condi tions . For example, water leakage may 
i·ncrease significantly after a dam is constructed in 
areas of specific geologic conditions such as karsti­
fied limestone. However , when this is likely, measures 
are taken to prevent excessive leakage. In this study, 
q (t ) , is assumed controllable in the sense that it 
elM be reduced to a negligible quantity by grouting. 
Thus, Eq. 3-6 can be reduced to 

(3-7) 

The flow components of both the undergr ound and 
surface subsystems change simultaneously with time. De­
pending upon their mutual relationships, various hy­
draulic conditions can be found. These conditions will 
determine whether the exchange flow,~ (t) , will be 
either positive or negative . For example, when q (t)s 
q1 < 0, ~he flow direction is from the surface sub~ 
system into the underground subsystem, so that the 
underground water content increases since qr(t) -

qu(t) > 0 , hence dV(t )/dt > 0. However, when qu(t)• 

q2 > 0 , the flow direction is from the underground sub­

system into the sur face subsystem. The rate of change 
of the former, dV(t)/dt, will depend on the magnitude 
of the r echarge qr (t) so that: (a) the water con-

tent of the underground subsystem V(t) increases 
whenever qr(t) > qu(t) i.e., dV(t)/dt > 0; (b) V(t) 

remains unchanged whenever qr(t) • qu(t) , namely 

dV(t)/dt = 0; and (c) V(t) decreases whenever qr(t) 

< qu(t ) resulting in dV{t)/dt < 0. In addition, 

qu(t) ~ 0 whenever both the following conditions are 

satisf ied: ~(t) = 0 and dV(t )/dt = 0 . 

3-2 Natural and Modified System Conditi~ns 

The system depicted in Fig. 3-1 can be thought 
of as a body of surface water representing the surface 
subsystem, while the underground subsystem consists of 
porous geological formations which, depending upon the 
hydraulic conditions of the system, can be filled 
either with water or with air . The quantity of water 
stored in the underground system has often been called 
the bank storage . This term wi ll be used interchange­
ably with underground subsystem or underground storage 
throughout this paper. 

With regard to the research object ive, it will be 
necessary to distinguish between the system under 
natural conditions and the system under modified con­
ditions. The hydrologic system dealt with in this 
paper, under natural conditions, consists of a river 
channel and the bank stor age a long ,the considered river 
reach. Under the modified conditions the system is 
comprised of a man-made surface reservoir and a natural 
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underground storage physicall y interact ing with the 
surface storage. From the point of view of application 
of t he techni ques devel oped in this paper to a hydro­
logic system, the natural conditions correspond to 
the period of reservoir planning while the period of 
reservoir operation is characterited by the modified 
conditions. Attempts are made to extract as much 
information as possible from the data available during 
the planning stage. [t is , however, clear that com­
plete knowledge of the modified system in most cases 
cannot be obtained until the modified conditions are 
created. Hence, in order to apply the results of in­
vestigations of the natural system to the modified 
system, some reasonable assumptions wil l have to be 
made concerning the manner and the extent to which the 
system modification will affect the system behavior . 

To outline the change of hydrologic process es 
caused by the system modification, the components of 
the budget equation should be considered. Firs~ as~ 

that the undergr ound subsystem can be neglected. There­
fore, the rechar ge, qr(t) , and the rate of change of 
the underground subsystem, dV{t)/dt, can be dropped 
from Eq. 3-5. Remembering that the loss of water 
fr om the natural system, q (t), is assumed to be zero, 
then g 

qc(t) + qd (t) + qp(t) - qb(t) - qe(t) a~ 
(3-8) 

is obtained. When such a system is modified, that is 
when a surface reservoir is constructed, some components 
on the left-hand side of Eq. 3-8 may be affected. Yet, 
it is usually possible to account for the resulting 
changes with a satisfactor y degree of accuracy since 
t hese processes are governed primarily by the hydro­
met eorological conditions unaffected by the system 
modification . 

Consider Eq. 3-8 term by term. The channel inflow, 
q (t), obviously will not be affected by a reservoir . 
T~e components of the direct surface inflow, qd(t), 

t he inflow due to precipitation, ~(t), and the evapo­

ration, qe(t), will, however, be different for the two 

conditions. Nevertheless, they are proportional to the 
areas of the syst em surface over which they occur. 
The q ( •) will increase since the reservoir water area 

p 
increases . Thus, for a given quantity of precipitation 
i t can be conveniently described as 

(3-9) 

where p(t) is rainfall per .unit area, and A (t) is 
area of the reservoir surface at the given tim~, t. 
The direct surface inflow, qd(t), will, however, be 

smaller than for the natural system because part of the 
area drained directly into the system is now sub111erged 
under the reservoir. Likewise, it can be defined in 
terms of the rainfal l and the direct drainage area 
Ad (t) which changes with time, namely 

(3-10) 

where cd = a constant parameter. 

Increase of evaporation is pr obabl y the mos~ 
signi ficant change r esulting from the system modifica­
t ion. However. it, too , can be determined when the 
evaporation from a unit surface is estimated. Since 



this remains unchanged for both conditions, it can be 
written 

qe(t) ; e(t)Ar(t), (3-11) 

where e(t) = the evaporation from a unit area of water 
surface, wi th Ar(t) and qe (t ) as defined previously. 

The remaining two component s of the budget equa­
tion, namely qb(t) and dS(t)/dt , become, under the 

modified conditions , the controlled reservoir release 
and the rate of change of reservoir storage, r espec­
tively. Wi th tne knowledge of the previously described 
components, and when a control is exerted over either 
qb(t) or S(t), the other component--S(t) or qb(t)--

is obtained from Eq. 3-8. Thus , as demonstrated, in­
sight into the natural system can, to a large degree, 
be extended to the modified conditions . 

When the assumption underlying Eq . 3-8 does not 
hold, i.e., when the contribution of the underground 
subsystem is significant, it is considerably more dif­
ficult to descr ibe the system. Even when all the 
previously di scussed extensions are possible, it is 
necessary to know the rate of change of t he underground 
subsystem, dV(t)/dt, and the recharge, q (t). The 
latter is not affected by the system modificat ion, and 
a reasonably accurate model can be developed to des­
cribe it . However, the dV(t) /dt component , besides 
being expensive to accurately assess, may be signifi­
cantly affected by the construct ion of the reservoir. 
In addition , the optimization of the reservoir opera­
tion requires that the underground volume, V(t), be 
simulated, so that the state of the system resulting 
from any gi ven (or assumed) decision can be evaluated. 
To accomplish the desired goal, Eqs. 3-5 and 3-7 are 
combined in a model capable of simulating the exchange 
flow, qu(t), as a function of S(t) and V(t), namely 

dS dV 
qc + qd + qb + qr - qb - qe - qg • dt + dt • ~-l2a) 

(3-12b) 

qu " ~(V,5) , (3-12c) 

where for reasons of simplicity the argument, t, is 
omitted . 

The above mathematical formulation i s rearranged 
to accommodate the use of discrete variables. Intro­
ducing Eq. 3-12b int o Eq. 3-12a and assuming that the 
exchange flow, qu(t), is properly defined by the 

syst em states , 5t-l and Vt- l' at the beginning of a 

given time i nterval, t, the 'following is obtained 

s • 5t -l 
c d qP + u b e g (3-13a) 

t .. qt + qt + t qt - qt - qt - qt, 

vt v 
t - 1 

+ qr 
t 

u 
qt (3-13b) 

u u (3-13c) qt q C\_l,vt-1) ' 

wherein the correspondence of symbols of Eqs . 3-12 and 
3-13 ls obvious. This mathematical descript ion of the 
syst em is depicted in Fig. 3-3 . However, when the ex­
change f l ow cannot be adequately described by the sys­
tem states at the beginning of a ~iven time interval, 
tho resulting stat es , St and Vt, must be used to 
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evaluate Then, the mathematical formulation of 

the system becomes 

S 5 c d p u b - qe g (3 14 ) t = t-1 + qt + qt + qt + qt - qt t - qt, - a 

s,_, 

v,_, 

Fig. 3- 3. 

(3-14b) 

(3-14c) 

l: 
s, 

~ 

s,_, 
q~>O 

q~ = qu(s1_1, v,) ~ 
cft <O 

v,_, 

l: 
v, 

u System Diagram When the Exchange Flow qt 
is a Function of the States at the Be­
ginning o£ the Given Stage t. 

which is represented graphically in Fig . 3-4. It Should 
be noticed that an iterative pr ocedure is required to 
evaluate q~ according to Eq . 3-14c. It should also 

be observed that in both cases, evaporation is regard­
ed as i ndependent of the surface subsystem state, 5 . 

3-3 Brief Out line of the Problem Solut ion 

Optimal operation of a water storage reservoir is 
based on some optimal policy of water release. Find­
ing the optimal policy requires a hydrologic and a 
compatible optimization model. Each of these two 
models is further subdivided into two parts: the 
hydrologic model consisting of the surface flow model 
and the underground flow model, and the optimization 
model compr ising t he economic model and a computational 
algor ithm. 

The r esult of modelling as a t otality depends, 
evidently, on many factors associated with compl~xity 
and compatibi lity of the models i nvol ved . For example, 
an oversimpl ified hydrologic model may offset the 
accuracy of results that ~.:an be achieved from a v~ry 
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Fig. 3-4. System Diagram When the Exchange Flow q~ is a Function of the States at Both 
the Beginning and the End of the Given Stage t. 

complex and computationally expensive optimization 
model, or conversely. On t he other hand, if both 
models are too complex, computation may not be feasible. 

The optimal policy can be based on evaluation of 
either benefits or losses resulting from the release 
of water in successive t ime intervals and the alloca­
tion of water to various economic activities. In this 
study, the optimal policy is founded on the gross 
benefits. 

Reservoir optimization in many cases utilizes the 
year as the time increment. This treatment is only 
satisfactory for large surface reservoirs where the 
total annual inflow represents a relatively small frac­
tion of the reservoir capacity. This approach may 
result i n signifi cant errors i n optimal policy when 
applied to small or medium size reservoirs. The possi­
ble errors may be accentuated by large seasonal varia­
tions of river flows and/or demands. I.n addition, t he 
optimal use of coupled surface and underground storage 
requires evaluation of the optimal policy over a finer 
grid of time points than a year. This is due to the 
fact that the water stored in the underground subsys­
tem is not necessarily available for us.e at a given 
time . The delay in availability, as demonstrated in 
Appendi x A, may in some karst areas be relativelysmall. 
In that case, points even a month apart would not 
properly account for the effects of underground storage 
capacity. 

Out of the four models mentioned, only two wi ll 
be dealt with in detail: the underground flow model 
and the computational algorithm. The economic model 
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and the surface water model will be treated here only 
to the extent necessary to incorporate them into the 
more complex hydrologic and optimization models. 

The economic model is treated only peripherall y . 
However, in order to avoi d ambiguities, the assump­
tions required to incorporate the economic i nto the 
optimization model ar e outlined. First , the economic 
projections over the project lifetime are assumed 
known. As a part of this assumption, it is further 
implied that values of water (x) to each potential 
user (i) such as irri gation, municipal and indus­
trial supply, power generation, and low f low augmenta­
tion, are determined and given in t erms of individual 
return functions, gi (xi)' for i = 1,2, ... ,n, where 

n is the number of economic activities. The return 
functions, gi(xi) ' may change with time in a periodic 

manner. The return functions of those economic 
activities wher e t he return depends on the quantity of 
water delivered and the general state of the system 
(reservoir size, head, etc.) are given for different 
r eservoir s i zes . Thus , the effect of the system size 
is accounted for. 

Dynamic programming, which is to be used in the 
computational a lgorithm, r equires that selecti on of 
the best returns be independent of the previous deci­
sions . The returns from agriculture, accor di ng to 
Hall and Dracup [1970], depends on the time of deli­
very. However, i n a recent study, Twyford [1973] 
indicates that for some crops , in all but very drastic 
cases of water shortages, the timing of water delivery 
may not be as critical as previously thought. Based 



on these considerations, the dependency of water value 
on timing of delivery is not considered in the follow­
ing optimization procedure with the exception of the 
known constraints imposed on the lower limit of irriga­
tion dell)3.nds. 

The natural phenomena affecting water resources 
systems are stochastic in their nature. Furthermore, 
the reservoir outflow is subject to the uncertainty 
inherent in water demand and other economic factors. 
To cope with these problems within the framework of 
optimization techniques, two basic approaches were 
applied in the past: deterministic optimization and 
stochast ic optimization. Even though deterministic 
optimizat ion is inferior to stochastic, it is freq..~ently 
applied because of i ts convenience. 

Two types of stochastic optimi:tation are in coJmDn 
use. Classical stochastic optimization methods, or, 
as called by Croley [1974), explicit stochastic opti­
mization (ESO) , are straightforward techniques. They 
consist of evaluating the expected optimal return from 
the known return function and i nflow probabilities. In 
dynamic programming, which is the most frequently used 
technique in water r esource problems, i t was found 
that the computational requirements quickly increase 
[Reefs, 1968; Croley, 1974) and it becomes virtually 
inapplicable under some circumstances [Hall and Howell, 
1963). The ESO requires two state variables for each 
storage reservoir incorporated into the system [Reefs, 
1968]. The number of stat e variables increases by the 
square of the number of storage reservoirs. The seoond 
difficulty is due to the serial dependency of hydro­
Logic events. The time series must be described by a 
set of conditional distributions. This requires the 
manipulation of large matrices of conditional proba­
bilities . The problem is accentuated as the time 
intervals become shorter since the dependency links 
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between the variables discretized over short time 
periods grow stronger. Thus, larger probability 
matrices must be used to describe the processes ade­
quately. Also, a large number of points may result in 
excessive computer time requirements. 

While the first shortcoming of the method is not 
restrictive for the problem at hand, the difficulty 
resulting from the dependency of the time series is a 
serious disadvantage. The discretization must be done 
over relatively short time periods and probabilities 
must be conditioned not only on the past events of the 
same time series, but also on the past and present 
events of the other series. 

To resolve the impasse into which ESO usually 
leads, an a.lternative method was proposed by Hall and 
Howell [1963]. The method was subsequent ly called 
generation-deterministic optimization- regression 
[Roefs, 1968) and also implicit stochastic optimization 
(ISO) [Croley, 1974). In a particular example Croley 
[1974] showed by contradiction that the results obtain­
ed by the two methods do not agree, as they should not, 
because ESO gives the expected value of the return, 
while ISO gives the optimum r eturn from a deterministic 
input. 

Unlike the method due to Hall and Howell [1963), 
the research detailed herein is based on the genera­
tion of a precipitation series and thence st:e~f~ow 
and recharge. These are then used as determan1st~c 
input to ascertain an optimal policy. The re~ul~lng 
return is a random variable and can be used w1th1n a 
stochastic framework to assess its statistical 
properties. Further, these can be used in the manner 
of Hall and Howell to determine operational policy and 
optimal reservoir size. 



Chapter IV 

CONJUNCTIVE USE OF COUPLED SURFACE AND UNDERGROUND STORAGE CAPACITIES 

4-1 Background Information 

As given by Eq . 3-7, the underground subsystem can 
be described by the fol lowing mathemati cal relation 

qrCt) - qu Ct) = d~f) , c 4- 1) 

where ~(t) and q (t ) are the recharge to t he sub­
system c~used by pregipitation and the underground ex­
change flow between the two subsystems . respectively. 
dV(t )/dt is the rate of change of t he water content , 
V(t), of the underground storage . This basic continuity 
equation combined wi th various assumptions concerning 
the functional relation of qu(t) and V(t), has been 

extensively used to describe the river hydrograph . 
Hydrologic literature i s abundant i n pract i cal appli ­
cations of the model given by Eq. 4-1, but less so in 
theoretical considerations of the q (t) to V(t) 
relationship. u 

A very generalized analysis with regard to the 
type and method of solution of t he basic differential 
equation associated with storage probl ems i s given by 
Yevjevich [1959) . The study covers a wide range of 
situations that usually arise i n practical problems . 
In the cited work the following assumptions were made 

s 
u 

(4-2) 

(4- 3) 

where H = H(t) is the water table elevation from some 
reference poi nt, q was defined previously, and a, b, 
m, and r are cons¥ants . In Eq. 4-2, S is some char­
acteristic of the underground volume. uits relation 
to V and its precise definition is given later (see 
Eq . 4-39). Notice that for simplicity of notation, 
the argument t is dropped from Eqs. 4-2 and 4-3. 
Nevertheless, it is i mplied that qu and Su are 

continuous time functions unless specified otherwise. 
Equations 4-2 and 4-3 indicate t hat both the water 
content of a reservoir and the outflow from it are 
functions of a single variable H. Combining Eq. 4-2 
and 4-3 gives 

1 n 
Su cGu (4-4) 

where c = bn/a, and n = m/r. When E.q. 4-4 is differ­
entiated with respect to time and introduced into 
Eq . 4-1 , 

( 4-5} 

is obtained. Equation 4-5 is derived under the assump­

dS u dV -n 
tion that ~ = dt The substitution qu y and 

k = (2n-l)/n = 2 - 1/n = 2 - r/m yields 

2 k 
y' +' CqJ - cy 0, (4-6} 

which is the differential equation of the water storage. 
It should be remembered that y is a continuous 
function of time. The above differential equation was 
i ntegrated analytically by Yevjevich [1959) for three 
basic cases: (a) the recharge equal to zero, qr = 0; 

(b) the recharge a const ant different from zero, 
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qr = qro # 0; and (c) 

qr = f(t), of t i me t. 

the recharge a simpl e functio~ 

A detailed solution of Eq . 4-6 

for the three listed cases and a range of values of k 
can be found in the cited reference . A few se l ·ected 
solutions frequently used to analyze hydrologic sys­
tems are presented below. 

(a) 

k 

k 

q = 0 
r 

1 -+ n 

(4-7) 

1 ( 4- 8) 

Both re l ationships have been used to analyze the re­
cession part of the streamfl ow hydrograph or the 
spring discharge hydrograph, see for example Knisel 
[1972 ) , and Burdon and Safadi [1963). 

(b) qr "· qro rf. 0 

( t/R r (4-9) 
k = 0 + n = 1/2 

e - w 
~ = qro t /R ' 

e + w 

1 - 1/2 
1/2 1/2 

where R ~ro and w = qro - quo 
1/2 1/2 

q ro + quo 

k=l+ n =l 

~here qro and quo are the initial values of qu 

and qr' respectively . The form of Eq . 4-10 was used 

by Doege [1973] and others . Caution should be exer­
cised when using the above expressions; the time 
origin t = 0 must a lways coincide with the time when 
the uniform recharge qr = qro commences. 

It should be noticed that only in the two pre­
sented cases is it possible to obtain qu as an e x­
plicit function of quo' qro' and t. In al l other 

solutions t o the differential equation 4-6 , a numer­
ical procedure is required to evaluate qu, for the 

solution is given in terms of the f unctional relation 
t = T(qu' quo' qr

0
). This, perhaps, explains the 

reason hydrologists have resorted to a re latively 
limited number of computational ly convenient models 
(mostly linear) , despite decreased accuracy. 

4-2 Basic Assumptions in ~1odel Development 

In the further model development, a proper de­
finition of the underground storages is r equir ed. This 
definition is based on several assumptions that are 
listed bel ow . They may create difficulties of a 
practical nature in model implementation. However, 
from a theoretical point of view these assumptions are 
not restrictive. The assumptions are : 

(1) The total volume of water stored in the 



underground storage subsystem up to the horizontal 
water level of the surface stor age subsystem can be 
described by a function of effective porosity, y, and 
the water level of the surface storage subsystem, 
h(t), or by a set of discrete values in a tabular form 
as 

W(t) ., W(y, h(t)) . (4-11) 

(2) The state of the underground storage sub­
system, i .e., the total water content in the subsystem 
can be described by a mathematical relation as a func­
tion of effective porosity, y, the water level in the 
surface storage subsystem, h(t), and an m x 1 vector 
of observations of the water table levels, H(t), at m 
points of the underground storage subsystem-Cor by a 
set of discrete values in tabular form) as 

V(t) • V(y, tt (t) , h(t)). ( 4-12) 

(3) The total water content of the surface 
storage subsystem can be described by a function of 
the water level, h(t ), in the subsystem (or by a set 
of discrete values in a tabular form) as 

S(t) • S(h(t)] . ( 4-13) 

Equations 4-11 through 4-13 describing the states 
of the two interconnected subsys tems as continuous 
functions of time are based on the working scheme pre­
sented in Fig. 4-1. It should be observed that Eqs. 
4-11 and 4·13 provide for a unique correspondence 
between the W(· ) and S(· ), so that W(t) ~ W[S(t)]. 
For simplicity of notation, the variables defined in 
Eqs. 4-11 through 4-13 will be continuous functions of 
time unless specified otherwise, so that the argument, 
t, can be omitted. 

~s 

Impermeable Barrier 

Fig. 4- 1. Definition of Basic Variables of the 
Subsystems . 

From the preceding description and Fig. 4-1, it 
is clear that Eqs. 4-11 and 4-12 imply an impermeable 
harrier separating the underground storage subsystem 
from the remaining portion of its own and surrounding 
tlroinage basins. It seems justified to emphasize also 
that the water table of the underground storage sub­
~ystem does not necessarily have to be assumed a 
~mooth surface. Additional necessary assumptions are: 

(4) The effective rock porosity, y, of Eqs. 4-11 
.md 4·12 can be assumed either uniform over the whole 
1111dcrground subsystem or it can vary from one part of 
the subsystem t o another. In the latter case, the 
ro~k proslty, y, may be described by an m x 1 vector 
<lf v;dues, corresponding to the vector H(t ) of Eq. 
·1· 12 . It is also assumed that y can be determined 
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either by a geophysical method, which is more desirable, 
or by means of the system identification . 

(S) An area around the surface storage reservoir 
is covered by a number of observation boreholes in the 
permeable underground storage and a vector of observa­
tions, H(t ) , exists over a period of time. 

(6) From the observed sequences of qc(t), qd(t) , 

q (t), qb(t), q (t ), q ( t), and dS(t)/dt, the time p e g. 
series of ~(t) may be determined from the basic 

budget equation (see Eq . 6-8). 
(7) Observations of the precipitation series, 

p(t), at the set of rainfall gauging stations covering 
the drainage basin are available. 

(8) Observations of the state of the surface 
subsystem, S(t), are recorded as a function of the 
elevation, h(t), during both a time period prior to 
the reservoir construction and an initial time period 
of reservoir operation. It should be clear that de­
pending upon the availabi l ity of the data concerning 
the surface subsystem, two different situations can 
arise. First, if the records prior to the reservoir 
construction (natural conditions) are available, all 
the conclusions- -whatever their accuracy--may be ex· 
tended up to and including selection of the r eservoir 
size. When only the records of the modified system 
exist, it is only possible to determine the optimal 
policy and operational rules . 

4·3 Mathematical Model of the Underground Subsystem 

The first part of this section deals with the 
derivation of the mathematical expressions needed to 
formulate the proposed model . The second part uses 
the relations derived to establish the final form of 
the model. Assumptions concerning the interrelation­
ships of the two subsystems are outlined whenever 
appropriate. 

PreZ.iminal"!J Mathematical. Derivations. In subse­
quent considerations of the model development, the 
knowledge of the rate of change of volumes described 
by Eqs. 4-11, 4-12, and 4-13, with respect to both the 
time and the e l evation, is required . They can be ex­
pressed in the following forms: 

l) dN • !_!! dh = D dh ( 4-14) 
dt ah dt wh dt ' 

in which Dwh" 81~[y,h(t)]/8h; 

2) 
dV 
dt • llYJ T .S!i av dh 

aH dt ~ ah dt 

rn / !!.!1 + o dh 
'=IH dt Vh dt , 

with (~]T • {3V(y,~(t), h(t) )/3H}T and 

oVh = av[y, tt(t), h(t)]/ah; 

and 

31 dS as dh • 0 dh 
dt • ah dt sh dt ' 

where 0
5
h = aS [h(t)]/ah . 

(4-15) 

(4-16) 

Evidently, 0 h of Eq . 4-16 represents the hori­
zontal area of thi surface storage sybsystem for the 
given elevation h(t) . Similarly, Dwh of Eq. 4-14 is 

the effective horizontal area of the underground 
storage subsystem at the given elevation h(t). These 
areas multiplied by the rate of change of elevation 
with respect to time, dh(t)/dt , give the rate of 



change of respective storage subsystem volumes with 
respect to time. 

Values of ~ and DVh of Eq. 4-15 are more 

difficult to visualize. Nevertheless, t hey have the 
same physical interpretation as D h and D h ' that w s 
is to say that ~H represent s the rate of chanae of 

the voluJI V(t) when the vector H(t) is changed 
for a unit vector and h(t) is kept-a constant. By 
the same token, DVh is the rate of change of the 

volume V{t) when h(t) is changed by unity while 
the vector !!('t) is kept constant. Clearly, from this 
discussion, the total rate of change of the volume 
V(t) is as &iven by Eq . 4-15. 

To assure tho usefulness of expressions given by 
cqs. 4- 14 through 4-16, the following remark is needed. 
From Eq. 4-16 dh/dt can be written as 

dh 1 dS qu(t ) - Q(t ) 

dt • Dsh Cit.. Dsh 

in which Q(t) is (see Eq. 3-8) 

Q(t) • qb(t) + q
0

(t ) + qg(t) 

- qc(t) - qd(t) - ~(t) 

( 4-17) 

( 4-18) 

with all variables defined in Section 3-1. Introduc­
ing the right-hand side of Eq. 4-1 7 into Eq. 4-14 &ives 

dW 0wh Cit • o-[q (t) - Q(t) 1 
sh u 

( 4-19) 

From another point of view, the total 1;ater con­
tent of the underground storage subsystem, V(t) , 
changes wi th time by reflect i ng t he prevailing hydrau­
lic conditions. As deduced by simple reas oning , the 
total change of the volume V(t) is comprised of two 
factors: (1) flow from the underground s torage sub­
syst em to the surface s torage subsys tem (or conver se­
ly) , denoted by 

dV 
~ ··q ( t ) ( 4-20) dt u • 

and (2) the total recharge to the underground storage 
subsys t em, namely 

dV 
r dt • qr(t ) · ( 4-21) 

The sum of Eqs . 4-20 and 4-21 yields 

• - [q ( t ) - q (t)] • u r ( 4-22) 

which is exactly Eq . 4-1. Its solution was discussed 
in Section 4-1. However, in general, i t will no l onger 

~:n~~s~~~~e0~ot~:s:~a~h~~n~:~te~~h~~!eu~!~;gr~~dde-
storage s ubsystem. Instead, as outlined i n -the follow­
i ng secti ons, q depends on both the V(t), and tho 
W(t). u 

11 

Derivation of Uathemati.caZ. ModeL . The basic 
equations of the model of conjunctive use of surface 
storage and underground storage are derived in this 
subsection. Let the exchange flow, qu, be written as 

qu • F(V(t), W(t)] , (4-23) 

where V(t) and W(t) were defined by Eqs. 4-ll and 
4-12. Differentiation of Eq. 4-23 with respect to 
time gives 

dqu • dF(V (t ), W(t)) , !f. dV +!f. d~. (4-24) 
dt dt av dt aw dt 
From Eq. 4-24 , after rearrangement , dV/ dt becomes 

dqu iiF dW 
dv crt- a-w Cit 
dt • aF 

av 
(4-25) 

with tho abbreviated symbo l s in Eqs . 4-24 and 4-25 
bei ng 

3F aF [V(t) , W(t )) 
°FV • iiV • iiV (4-26) 

and 

D ., !f.=- 3F(V (t), W(t )] 
FW aw aw 

( 4-27) 

Substituting the right-hand side of Eq. 4-19 for dW/dt 
in Eq. 4-25 yields 

dq 
dV -;fi! - 0FW [Rws ~ - Rws Q] 

dt • DFV 
( 4-28) 

Equatina the right-hand side of Eq. 4-22 to the 
right-hand side of Eq. 4-28 gives 

• ·DFV [qu - qr) ' 

f rom which it follows that 

dq 
~ ­dt 

by R, 

or with (1-R) taken out of the brackets, 

dq R 1 
~ • ·(1-R)D (q + - Q -- Q 1 . dt FV u 1-R 1-R T 

( 4-29) 

( 4-30) 

then 

c 4-31) 

( 4- 32) 

Further simpl ifi cation of Eq . 4-32 is possible by 
denoting 

and 

1 
lji• '}-R· 

R 
t • 1-R • ~i>R 

so that Eq. 4-32 finally becomes 

( 4- 33) 

( 4- 34) 

( 4-35) 



(4- 36) 

in which, i t should be remembered, qu' Q, and qr' as 

well as e, ~ . and *• are continuous functions of time. 

The differential equation of the f orm given by Eq. 
4-36 can , under certain conditions, be integrated ana­
lytically. The number of cases in which this is 
possible is limited. These specific conditions are 
examined in the following section . 

4-4 Integration of Basic Differential Equation 

It is clear that Eq. 4-36 describing the flow 
between two interconnected storages is much more com­
plex than its counterpart Eq . 4-1 that describes the 
outflow f rom a single reservoir. It should be ob­
served that Eq. 4-1 is derived for modelling a natural 
hydrologic system. 

In general, the exchange flow, qu(t) , is a con­

tinuous time funct ion, hence it is expressible in terms 
of an infinite series of polynomials of the form 

f.(V,W) = [f(V,W)]j , namely 
J .. 

qu(t) = F(V,W) ,. I c . f . (V, W) 
j= 1 J J 

= I c.(f(V,W)]j 
jo.l J 

The use of only the first few terms is needed t o 
achieve a reasonable approximation of qu(t), say 

j = l , . .. ,m, so t hat Eq . 4-37 can be written as 

m 
q (t) = I c.(f(V,W)]j 
u j =l J 

( 4-37) 

(4-38) 

Prior to attempting the integration of Eq. 4-36, 
it is shown that Eq . 4-5 represents a special case of 
Uq. 4-36. This exercise also helps to s elect the pro­
per and physically justifiabl e form of f(V,W). To 
that end let 

(4-39) 

where, for the natural conditions of the hydrologic 
system, W = constant, so that dW/dt = 0. Combining 
the derivative with respect to time of Eq . 4-39 with 
Eq . 4-22 gives 

dSu dV 
dt" dt " - (qu(t) - qr(t)] · ( 4- 40) 

Furthermore, let 

~(t) = (cSu) l/n , (4-41) 

from which , after differentiating with respect to time 
.u1d inserting into the right-hand side of Eq. 4-40 in 
place of dS/dt, 

dq dS 
__ -u " .!.cl/n sl/n-1 u 
dt n u dt 

(4-42) 

is obtained. El iminating Su from Eqs . 4-42 and 4- 41 
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yields 
n-1 

nqu d~ + c(qu - qr)dt • 0, (4-43) 

which is exactly Eq. 4-5. 

Equation 4- 43 can also be obtained from Eq. 4-36 
directly. Remembering that W = constant , it follows 
from 

that 

F(V,W) = cl/n Sl/n 
u (4-44) 

~ = .!. c l /n [V _ W) (1-n)/n .. .!. cl/n 5 (1-n)/n (4_45) 
av n n u ' 
and 

i)F aw- = o . (4-46) 

With ilP/ilW ~ DFW = 0, Rwv • OFW/OFV = 0, so that 

R = Rwv 0 , i t follows that 

9 = 3F/ilV: ! cl/n S(l-n)/n 
n u ' (4-47) 

¢ = 0 • (4-48) 

and 

'41 = 1 . (4-49) 

When Eqs. 4- 47 through 4-49 are substituted into 
Eq . 4- 36 

d~ l 1/n 5 (1-n)/n ( q ) 
dt=- ;c u ~ - r (4-50) 

is obtained. This is Eq. 4-42 from which Eq. 4- 43 was 
derived . 

From the preceding discussion it appears that the 
function f. (V, W) which is to be used for the des­
cription oflthe exchange flow, qu, under modified con­
ditions ought to contain the difference term (Y - W) 
found i n Eqs. 4-39 and 4-44 which are used to describe 
the underground flow under natural conditions. lndeo~ 
this is an appealing and physically sound form since , 
remembering that both V and W are nonnegative time 
functions, it satisfies the following three conditions: 
(a) qu = 0 when V " W; (b) qu > 0 ~hen V > W; 

and (c) qu < 0 when V < W. 

Since the water stage osci llation of a vast 
majority of rivers is relatively small , the assumption 
that the volume W • constant adopted for hydrologic 
systems under natural conditions i s a reasonable ap­
proximation of hydraulic condi t ions . Except in 
special cases outlined later, this assumption might 
not be generally valid for a modified system where 
t he water level of a surface reservoir can vary signi­
ficantly enough to affect the exchange flow. This 
leads to the conclusion that an additional factor 
should be incl uded in the function f. (V, W). For 
that reason, consider the form W(V-W)J which seems to 
be able to sat isfy the requirements . The above stated 
conditions (a) through (c) still hold for this 
form. Furthermore , for a constant value of the dif­
ference, say (V - W) = constant, it gives an in­
creased exchange flow, q , as W increases and 
conversely, which is a dgsirable property of the 
function f. (V, W). In addition, t he proposed form 

J 
bears some resemblance t o t he formula describi ng the 
underground discharge into a gal l ery from an uncon-



fined aquifer (for example see V. T. Chow [1964), pages 
13-13 and 13-14). Hence, for the purpose of further 
discussion, the function f(V,I~) is assumed to be 

( 4-51) 

with ;\. and v being . constant parameters to be de­
termined for each particular system. \'lith Eq . 4-51, 
the exchange flow, qu, can be expressed as 

m . 
qu = F(V,W) = j~l cj [f(V,W))J 

r c . (W~(V-W) 11)j, 
j =1 J 

( 4-52) 

where cj (j = l, ... ,m) is a set of constant para­

meters satisfying the mathematical conditions for con­
vergence of the series Eq. 4-52 . 

Since a particular case of the integration of Eq. 
4-36 wil l i nvolve the relation between the volumes W 
and S defined by Eqs. 4-11 and 4-13, reference is 
made to the statement after Eq . 4-13, namely that 
W(t) = W[S(t)]. Based on this, some modification of 
Eq. 4- 14 is needed. Combining Eqs . 4-14 and 4-16 

dW aw dS aw as dh 
dt = as dt = as ah dt 

· b · d h' h · 1· o aw as lS 0 tune , w lC lmp leS wh = as IT so 

D 
R ~ = Caw as) / Cas) = ~ws. 

ws Dsh as afi" 3h a 

(4-53) 

that 

( 4-54) 

With this in mind, several possibilities are 
analyzed as follows. 

Case A. The following conditions are satisfied: 
(1) m = 1; (2) A = 0; (3) v = 1; and (4) there is 
a linear functional relationship between W and S. 
The conditions (1) through (3) yield 

(4-55) 

and the condition (4) requires that 

W a L(S) ~ a + b S . (4-56) 

According to Eq . 4-54 and taking the partial derivative 
of Eq . 4-56 with respect to S, it follows that 
R ws = aW/aS = b . Furthermore , since DFW = <lF/3W = -c1 

and OFV ~ aF/ClV = c1 , it follows that ~ = DFW/DFV 

~ -1, from which 

R = R R = -1 b = -b . wv ws ( 4-57) 

Substituting Eq . 4-57 into Eqs . 4-33 through 4-35 gives 

1 -b ( b 
1/J = l+b; t = l +b ; and e = cl 1+ ) • ( 4-58) 

Thus, with the values of ~ . ~. and 0 as given 
by Eq . 4-58, Eq. 4-36 becomes a differential equation 
with constant coefficients, namely, 

( 4- 59) 
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Sol ution to Eq. 4-59 perta1n1ng to two particul ar cases 
was obtained by Yevjevich [1959]; (a) when bQ + qr 

= 0, the solution is given by Eq . 4-8 in which c 
should be replaced by c1(l+b) of Eq . 4-59; and (b) 

when bQ + q = constant f 0 the solution is given 
r 1 

by Eq. 4-10, w_here c = c1(l+b) and q = -1 b(bQ +q ). ro + r 

Case B. Let the conditions of Case A hold, ex­
cept for the condition (4). It is readily seen that 
when W and S are arbitrary functions of the water 
table elevation, h, the Rws is a function of h, re-

gardless of the fact that qu is expressed by a very 

simple function F(V,W), namely 

R ws 
aw/ah = R (h) 

as /ah ws s 
(4-60) 

Thus, ;JI, ~ and e are all functions of h, that is 

w ~~(h); ~ =~(h), and e = e(h) 

When these values are substituted into Eq. 4-36 

dq 
~ = -6(h)[qu + ~(h)Q- ljl(h)qr) (4-61) 

is obtained. This is, even under the assumption that 
Q and qr are known, a differential equation with two 

variables, q and h, both functions of time. Hence, 
in order to Hbtain a solution to the above equation , 
it will be necessary to couple Eq . 4- 17 and Eq . 4-61. 
Thus, a solution to a system of two differential 
equations is required, namely: 

dq 
dtu = -e(h) [~ + Hh) Q - W(h) qr] , 

dh 1 
dt = o [ 'lu - Q] • 

sh 

which, of course, can be converted into a single 
second-order differential equation of h . 

( 4-62a) 

(4-62b) 

From the theory of differential equations, it is 
known that only a relatively small number of differen­
tial equations with nonconstant coefficients can be 
solved analytically, i.e. , solutions are obtainable 
only for the equations satisfying fairly rigid require­
ments concerning the functional relationships contained 
in the differential equation. In addition, the des­
cription of Q and q must be carried out piecewise. 
This creates further rdifficulties in obtaining an 
analytic solution. For that reason it is proposed that 
the solution to the set of Eq . 4-62 be found by a 
numerical method which will be examined in detail later. 

Case C. This pertains t o the most generalized 
approach to solving Eq. 4-36. As demonstrated in Case 
B, a relaxation of the condition (4) of Case A intro­
duced some difficulties which could not be overcome 
when attempting to obtain an analytical solution. It 
can be expected that the further relaxation of the 
conditions stated in Case A will create additional dif­
ficulties. This is illustrated by a simple example. 
To that end, relax the condition (3), say that v 1 1, 
while retaining the conditions (1) and (2) . Then 

~ = F(V,W) = c
1 

(V-W) v, ( 4-63) 



from which it immediately follows that 

(4-64) 

Since V • V(y, H(t), h(t)) , it follows that in 
Eq. 4- 36 the term oF;= 0 (~(t), h], which leads to a 
system of three differentihY eq~ions 

dqu 
Ci't = -e[qu + ~ - ljl qT) (4-65a) 

(4-65b) 

and 

dV - = - (a - q ) ' dt 1.1 r (4-65c) 

which can be solved numerically. 

4-5 Numerical Integration of the Storage Equation 

The hydraulic conditions.. r.esul ting in the simpli­
fied flow equations, such as those given by Eq. 4-59 
for Case A and Eq. 4-62 for Case B, are infrequently 
found in the field. Furthermore, hydrologic data are 
almost exclusivel y discrete time series. Finally, as 
already demonstrated, it is rtecessary to simulate the 
system states, S and V, in such a manner that will 
in turn facilitate simulation of the flow components, 
~.(t) and q (t). This is a compelling reason to 
d~vise a nume¥ical approach c~able of handling a 
relatively wide range of sitaations that may be 
encountered. 

To that end, the set of differential equations 
4-65 is rewritten i n the finite di fference form, for 
ht • 1, as 

and 

where 
where 
those 

Q = 
t 

~ + ~-1 
2 

qr r 
t. + qt-1 • 

2 

( 4-66a) 

(4-66b) 

( 4-66c) 

Eq. 4-16 was incorporated into Eq . 4-66a, and 
the correspondence of the symbols in Eq. 4-66 to 
previously defined is obvious . Replacing 

u u u 
(Qt + ~-1)12 • qt • (qt • qt-1)/2 and 

r r r qt = (qt + qt_ 1)/2 , Eq. 4-66, after rearrangement, 

bl)comes 

(4-67a) 
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and 

V " V - qu + ar 
t t-1 t "t ' 

u 1 - 9/2 u 
qt • 1 + 9/2 qt-1 

e -
+ 9/2 ¢ ~ 

e r 
+ 1 + 9/2 ljlqt . 

( 4-67b) 

(4-67c) 

It is , however, customary to take time units of a 
length over which the flow components can be considered 

u r 
unchanged. Thus, the values q t, qt and Qt can be 

u r replaced by qt, qt and Qt. In this case Eq. 4-67c 

will be slightly modified. With these modifications, 
the working set of equat ions is 

S • S + qu 
t t-1 t 

(4-68a) 

( 4-6Bb) 

and 

(4-68c) 

Thus, a system of nonlinear differential equations 
was converted into a system of nonlinear algebraic 
equations which are more convenient to ~ork with. I t 
is to be solved for all t = 1,2 , •. . , Nt' where solu-

tion is always based on the knowledge of t he system at 
time t- 1, V t" 1, 2, ... ,Nt. Consequently, t he 

system can be solved when tne three initial con­
ditions, S , V and qu, are known . 

0 0 0 

Two points should be. emphasized. (1) The val ue 
of Qt consists of several flow components (Eq. 4-18) . 

Under modified condi tions , some of these components may 
be dependent on the syst em states, St and Vt . It 

.appears that the evaporation , qe (t ) , has the most sig­

nificant dependency on St . Inaccuracy resulting f rom 

the lumped Qt can , of course , be reduced by splitt ing 

it into components. This, however, would introduce 
additional equations into the system 4-68, which, need­
less to say , increases the computational burden. (2) 
The flow components comprising Q and qr are always 
assumed known, they are either obierved ortgenerated. 
Hence, if a simulation of the modified system is de­
s!redpaccgrding tor(l), some assumptions concerning 
qt' qt ' qt and qt' as explained in Section 3-2 , 

have to be made . 

The above system of equations can be solved by 
utilizing various computing techniques. The remaining 
part of this se-ction is devoted to this aspect of the 
pr oblem . Nevertheless , it is impossi bl e to prescribe 
a method for each particular case that can be found in 
the fie ld, since these particular conditions determine 
preferability of one technique over another. It 
should be reiteTate9 that, in general, e, ~ and ~ 

~~s:u~~~i~~~8~fc~eb~o~~~~~~nVt8sand wt = W(St) . 



u u r 
qt = r(V,W) qt-l - A(V,W) ~ + fl(V ,W)qt 1 (~-69) 

1 e where r(· ) .. 19, A(• ) = ~e ~ = r(· )94>, 
e + 

n(· ) • ~. r(· )~ . With this in mind, tWO 

and 

possibilities are outlined. 

{a) When the time intervals are short enough so 
that the following holds (see Fig. 3-3) . 

rCt 
+ v 

t-1 
w + w ) 

r(\- 1· wt-1) = t 2 t-1 
2 

(
vt + vt-1 wt +

2
Wt-l ) 

A(Vt-1' Wt-1) -A 2 

(
vt + vt-1 wt +

2
Wt-l) 

ncvt-1' wt-1) = n 2 

and 

This is a relatively simple computational 
consisting of the following steps . 

problem 

(1) Por the known Vt- l and St-l ' find 

Wt_ 1 (St_1) and evaluate the functions 

r ( ·), A ( • ). and n c • ) • 
(2) 

(3) 

{4) 

With qut 
1

, Q and qr and the evaluated 
- t t 

functions of (1) , compute q~. 
r u 

Use the values of qt' qt and ~ in Eqs. 

4-68a and 4-68b to find S and Vt' 
respectively. t 
Repeat steps (1) through {3) for every 
t " 1,2, ... , Nt. 

(b) When the above conditions are not satisfied, 
it will be more difficult to obuin the solution be­
cause some iteration procedure is needed (see Fig. 
3-4). Computation can be described by several steps 
as follows: 

and 

(l) 

(2) 

( 3 ) 

( 4) 

(5) 

(6 ) 

Assume the values of V~ and S~, and find W~. 
With the assumed values of Va and \'Ia compute 

t t' 

(va + v ~ + wt- 1) r t t-1 
2 2 • 

A (~ • vt-1 W~+Wt- 1 ) 
2 2 • 

( va + \-1 ~ + w 1) n t t t-
2 • 

Compute q~ according to Eq. 4-68c. 
u 

Insert qt into Eqs. 4-68a and 4-68b 
c c 

vt and st . 

Repeat steps (1) to (4) until 

si • si (each time redefine 

vt . \>· 
Repeat steps (1) through (5) for every 
t • 1,2, ... ,Nt. 

to find 
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Evidently, an init\al guess will have to be made 

for every t = 1,2, ... ,Nt . However, it does not appear 

to be a problem in practical computation. That is, the 
initial guesses of Vl and Wt are obtained by the 

steps ( 1) through (3) of possibility (a) . 

v3
, wa and sa stand for the The symbols 

assumed values and 

computed values uf 
spectively. 

t t t c 
vc, We and S stand for the 

t t t . 
the volumes vt, wt and st. re-

If a simple mathematical re l ation between the two 
subsystems such as that given in the Case A of the 
preceding section holds, and when finite difference 
equations are used instead of differential equations , 
some computation1l1 simplifications can be achieved. 
Under these conditions the parameters given by Eq. 4-58 
are constants, namely 

~ • tis• t • ~.and 0 = c1(l+b) , 

which, when inserted into Eq. 4-68c, give 
1 1 ( 4-70) al = r;9 = l+c

1
(l+b) ' 

c
1

( l+b) -b 
-c1b 

a2 ,._!_Q= 
l :t-0 l+c

1
(l•b) (l+b) = l+c

1
(l+b) ' 

( 4-71) 

and 

(4-72) 

Since b and c
1 

are constants, it implies that 

a
2 

and a
3 

are also constants . Thus, Eq . 4-68c 

be written as 

( 4-73) 

which is the autoregressive-moving average (ARMA) 
model. It is very appealing, for it describes the e x­
change flow, qu , at t ime t, as a linear function of 

t . 
the same f l ow at the preceding time t - 1, the lumped 
surface f l ow components of Eq. 4-18, that is, 

b e g c d p 
Qt = qt + qt + qt - qt - qt - qt 

and the recharge, q~. Furthermore, since a 1, a2 , and 

a
3 

are constants, thus giving the exchange flow in­

dependent of the volumes V and W, the former does 
have to be simulated. Hence, the equation 4-68b may 
be dropped out of computation so that only ~o equa­
tions must be solved simultaneously for every time in­
terval. In order to be able to solve the equations at 
time t • 1, one must know the intial conditions, q~. 

The above discussion de.monstrates two points . 
First, i t shows what conditions are implied by assuming 
the ARMA model for the exchange flow between two re­
servoirs with significantly varied contents. Second, 
the ARMA model can be used when there are no data to 
identify the physical co~onents, such as W and V, 
and the exchange flow, qu, as described in Section 
4- 4, Eq. 4-38. 



Chapter V 

MATHEMATICAL MODEL FOR RECHARGE 

5-l Introductory Remarks 

Recharge to an underground aquifer is a complex 
hydrologic process. It depends on a large number of 
atmospheric factor s and on the properties of t he drain­
age basin. These usually vary in both time and space. 
Classical hydrologic literature [Mainzer, 1942; 
Linsley et al., 1958; Chow, 1964) describes the in­
filtration as a decreasing function of time measured 
from the moment when precipitation starts . A fre­
quently used expression is 

(5-1) 

where q = the infiltration capacity, q : the rp ro 
maximum infiltrat ion capacity, q • the infiltration rc 
rate approached asymptotically by the infiltration ca­
pacity, qrp, as the soil becomes saturated, and k • 

constant river basin characteristic . Clearly, the 
i nfiltration capacity, q , equals the maximum i n-rp 
fi ltration rate, qro, at time t ~ 0. The above exp~-

sion is based on the assumption that the supply rate, 
p, is greater than or equal to the infiltration capa­
city (p ~ qrp). In that case the actual infiltration , 

qr, equals the infiltration capacity qrp· If this is 

not the case, namely when the suppl y rate, p, is 
smaller than the infiltration rate , q , then q • p. 

rp r 

From examples given in the cited ref erences it 
can be seen that the infiltration rate capacity, q , rp 
rapidly approaches the constant value qrc· On the 

other hand, a study of reservoir design and operation 
involving optimization can at best be based on daily 
ubservations. More frequently, the data are discre­
tized over much longer time intervals. The following 
consideration assumes a day as the basic time unit . 
The rainfall events are assumed uniform over the 
~elected time unit. 

The conditions which determine the recharge, 
usual l y found in areas of karsti fled limestone , can be 
regarded as distinct from those prevailing in the more 
frequent river basins. Several factors affecting re­
~harge to karstic aquifers are important [Le Grand , 
1973) .such as: (a) water movement occurs t hrough 
privileged routes such as fissures, cracks, fault s, and 
even large underground river channels; (b) vegetative 
cover is poor or nonexistant; and (c) geomorphologi­
cal features allow for accumulation of large quantities 
of water over small areas, from which concentrated 
recharge of high intensity takes place. 

All these factors, combined with the i nevitable 
river basin heterogeneity and often the underground 
~ummunication between adjacent catchments, make the 
physical recharge models speculative, if not unrealis­
tic . The application of a simpler mathematical model 
fo~ the description of the recharge to a karst aquifer 
1-; unavoidable. This approach seems particularly 
.1ppealing when the recharge model was used i n a pro­
,·c~s seeking optimal use of a surface reservoir 
physically connected to a natural underground storage. 
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The modelling of r echarge to karst aquifers is, 
as is karst hydrol ogy i t self, a relatively recent deve­
lopment. Artificial recharge to a karst aquifer was 
described by Green [1967), while natural r echarge to 
several small drainage basins in the United States was 
analyzed by Knisol [1972], with the recharge model 
based on daily pr ecipitation given by 

R " 
a b p 
2 2 ' a + p 

(5-2) 

where R ~ the fract ion of the daily precipitation, p, 
which infiltrates, and a and b are constant charac­
teristic parameters of the drainage basin. Two impor­
tant conclusions can be drawn f rom the Knisel study: 
(1) description of karst hydrologic systems by linear 
model s is a satisfactory approximation, and (2) when 
the recharge given by Eq . 5-2 is used in simulation of 
springflows a better fit to the observed data is ob­
tained than when the precipitation events are used for 
the same purpose . In addition, it is readily seen from 
Eq. 5-.2 that the recharge model is an appropriate non­
linear transformation of the daily rainfall . 

Based on the above conclusions, an attempt ismade 
herein to develop a mathematical model for recharge to 
karst aquifers from the data collect ed under the 
natural hydrologic conditions. By relaxing the assump­
tion implied by Eq. 5-2 and by uti l izing a model which 
is able t o relate the recharge to both the daily pre­
cipitation and conditions in the r iver basin created 
by preceding hydrologic events, high quality simula­
tion models were expected. 

5-2 ~~del Formulation 

It was demonstrated in Chapter IV (Eq. 4-40) that, 
under natural hydrol ogic conditions, the continuity 
equation of an underground subsystem can be written as 

(5-3) 

where Su(t) is given by Eq . 4-39, and qu(t) and 

qr(t) are defined as the underground exchange flow 

and the recharge to the underground subsystem, 
respectively (sec Eq. 3-6). 

l~en the hydrologic system is assumed linear, then 

5-4) 

is obtained according to Eq. 4- 5 for n· = l. The vari ­
ables of Eq. 5-4 are continuous time funct ions . Since 
the observations of the hydrologic time series are 
almost always given as discrete values over specified 
time intervals, and sjnce treatment of the discretized 
data usually gives satisfactory results, Eq. 5-4 is 
re1"1"i tten in a finite difference form for two consecu­
tive time points as 



u u 
qt - qt-1 u r 
~--;-,..=-:-~ = -c(q - q ) t - (t-1) t t . 

(5-5) 

The notation was changed sl ightly to reflect the use 
of discrete observations. The correspondence to con­
tinuous variable notation is evident. Dependi ng on 
what form of the right- hand side of Eq . 5-5 i s used, 
two s light l y different cases are presented: 

Case 1 

(5-6) 

which, after a re-arrangement, gives 

(S-7) 

Case 2 

(S-8) 

fr om which it follows that 

(5-9) 

Regardless of the expression used, it is readily 
seen that Eqs. S-7 and S-9 are mathematical formula­
t ions of the familiar autoregressive-moving average 
linear model of size (1,1). Detailed treatment ofthis 
type of model is described by Jenkins and Watts [1968), 
and by Box and Jenkins [1972), from which the abbre­
viated notation, ARMA (1,1) , was adopted . 

r 
Let the recharge , qt , of Eqs . S-7 and 5-9 be 

expressed in t erms of a linear combination of some 
functions of daily precipitation, fj(p), the form 

which is elaborated upon in the subsequent text. 
Namel y, l et 

of 

(S-10) 

with ao ' a l, ... ,am being constant parameters, re­

ferred to in the further t ext as the vector 8. Since 
the recharge is a function of the daily rainfall at 
time t and is also affected by the conditions i n the 
drainage basin created by the precipitat ion of the 
several days preceding the day t, tne l inearcombina­
t i on on t he right-hand side of Eq . 5-10 should reflect 
these facts. The vector S of Eq. 5-10 cannot be 
identified dl~ctly. However , the identification can 
be done in an indirect manner as follows. 

[nserting the right-hand sido of Eq . 5-10 into 
Eqs . 5- 7 and 5-9 yields 

u u 
qt = if>o + if>1qt-1 + if>zfl (p) + · · ,+ if>m+l fm(p)' (5- 11) 

wher e the coefficients ij>
0

, lf>1 , ... , lj>m+l for Case 1 are 

given by 

if>o 
2 - c 
2+C 

2c 
if>z = 61 ~; .. . ; 

(5-12) 
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The vector 1 for Case 2 is described by 

c 
if>m+l = 6m ~ (5-13) 

Equation 5-11 has r et ai ned the basic characteristics of 
Eqs . S-7 and 5-9, i.e., it is still a mathematical for­
mulation of t he ARMA 1 i near system. However , the order 
of the model i s changed. Ins t ead of only one term of 
the moving average part of Eqs. S-7 and S-9, Eq . 5-11 
has m terms, thus it is defined as an ARMA (l,m) 
model. 

Application of this t ype of linear model ·to 
hydr ologic processes was described by Yevjevich [1972c] 
The model is usually convenient from the ~omputational 
point of view because the order of the MA part, m, is 
usually a small number; it is ver y seldom greater than 
three. In many instances , m • 1 appears to be a 
sufficiently accurate approximation of the system. 
This can be explained by the fact that the information 
contained in the terms j a 2, j • 3, ... is already in 
the autoregressive (AR) part of the model . In the 
present model, the AR part consists of q~_ 1 . These 

pr opert ies of the model make it attractive for use 
under the conditions that the system r esponse depends 
on the previously realized events, as is the case with 
infiltration. 

From Eq. 5-11 the system can be identified. First, 
the vector if> is estimated. From that, the veetor 8 
is found for-either Case l or Case 2. The vectors S , 
of the two cases given by Eqs. 5-7 and 5-9 are not­
significantly differ ent from each other . Nevertheless, 
the form given by Eq. 5-7 seems more appeali ng and' is 
r ecommended for use . However, both cases should be 
investigated and the one which gives a better approx­
imat ion to the observed set of data should be selectal 
The measure of goodness of fit is discussed in the 
next section . 

5- 3 Calibration of tho ARMA (l ,m) Model 

It is evident that the vector if> can be cstim~d 
from Eq. 5-11 when a sequence of observat ions of the 
exchange flow, q¥, and of precipitation, pt, are 

available. The estimation can be done by the least 
squar es estimation method. It should be noticed that 
the coefficient ij>

0 
of Eq. 5-11 can easily be forced 

to zero by t he comput ati onal algorithm , which results 
in 6

0 
= 0 i n Eqs. 5-10, 5-12, and 5-13. 

In t he course of the model calibration , sever al 
aspects are of interest: observation of a sequence of 

u the underground outflow, qt , the form of the func-

t i ons of preci pitation, fj(p), and the size of the 

moving average part, m. There are no precise answers 
to t he last two questions . However, some generally 
accepted rul es in approaching the problem do exist . 
They are outlined below. 

A set of data for the rQcharge modeZ consi s ts of 
daily observations of precipitation events at least 
one rainfal l gauging station and of daily observations 
of the under ground exchange flow into a reach of the 
streamflow channel, qu, both collect ed while the 
syst em is under natur.Ut conditions . If t here ar e mor e 



than one observation station, a weight ed average 
according to the area covered by each station is recom­
mended . The exchange flow series can be estimated from 
the observations of input and output series of the sur­
face subsystem from Eqs. 3- 5 and 3-7. When these equa­
tions are combined, they give the discretized form of 
the continuity equation of the system as 

u b e g c d p 
qt = qt + qt + qt - qt - qt - qt + <5 t - 5t-l), <5-14> 

with alJ the variables as defined in Chapter Ill. 

Se~eotion of t he form of the functi.cms fd (p). 
This aspect of t he system identification is probably 
the most important. Yet, there is no method for se­
lecting the form of the f .(p). Several alternatives 

J 
must be considered and the one which appear s to be most 
suitable is chosen. Nevertheless, there is no guarantee 
that some other form of the f.(p) would not give a 

) 

better fit. The following is only a guideline in se­
lecting the form of the fj(p) functions . 

It seems justified to attempt selection of the 
function fj(p) which is able to reflect the existing 

conditions affecting recharge. For that reason, some 
polynomial transformation involving precipitation at 
times t, t - 1, t- 2, ... , seems suitable. Let the 
generalized expression of the f.(p) be of the form 

) 

zl z2 
(pt) (pt-j+k) (5-15) 

where pt and 

fall on days t 

pt-j+k are observations of daily rain­

and t-j+k, respectively, and z1 and 

z2 are constant s . From this, several part icular 

choices can be derived. 

(1) Let z1 " 0, z2 • 1, and k • l, then 

fj(p) = pt-j+l ' (5-16) 

so that the recharge can be written as 

r 
qt = 61Pt + BzPt-1 + · · · + 6mPt -m+l · (S-l7) 

This is the simplest form, where fj(p) o p . 1 is t-)+ 
precipitation of j - 1 days prior to the time t. 
The foxm of the MA model of Eq. 5-17 is frequently used 
in hydrologic modelling and is considered to be a suf­
ficently good approximati on of the processes involved . 

(2) Let z1 • 1, z2 • 1, k • 1, then 

fj(p) • ptpt-j+l' 

from which it follows that 

q~ = Blp~ + 82PtPt- l + 

(5-18) 

(5-19) 

In a similar manner some other forms can be derived and 
investigated. I t should be noticed that Eqs. 5-17 and 
5-19 r epresent t he response function known as the linear 
unit hydrograph and the non-linear unit hydrograph, 
respect ively. 

SeZection of thB size of t"M MA parT:, m, can be 
performed by using the method outlined by Jenkins and 

18 

ll'atts [1968). To t hat end, l et q~ represent 

estimated value of the underground exchange flow, 
Thus, 

(5-20) 

From this, the vector 1 is estimated by solving a 
set of m • 1 l inear equations which minimize the 
sum of the squares of the differences between t he ob­
served and the estimated values of the underground 
exchange flow. The sum of the squares, t , is given by 

Nt 
~ L c~ - Q.~>2 

t =l 

with Nt ~ the total number of observed data points. 

Evidently, the minimi zed value of t depends on t he 
number of terms included in the MA part of the model 
of Eq. 5-20 . Let a; • t/Nt, where m denotes the 

size of the MA part of the model. When the values of 
a; are computed and plotted against m, for m = 1, 

2, .. . , an empirical function is obt ained . This func­
tion can take one of the following two shapes: either 
it reaches the minimum for a certain value of m after 
which it i ncreases with inclus ion of more terms , or i t 
is a nonincreasing function of m. In the former case, 
the size of the MA ~art is that m which gives the 
minimum value of om. When the latter shape is found, 

the size m after which no significant reducticn in 

o2 is accomplished should be selected. This makes the 
m 

decision concerning m somewhat arbitrary. 

After the functi on, fj (p) , and the model si:~:e, 

m, are chosen , the estimated vector, 4>, must be con­
ver ted i nto the desired recharge model-vector, ~­
When the form of the model is that of Case 1 (Eq. 5-7), 
the parameters 8

0
, s1 , ... , am are given as follows: 

2+c 2+c 2+c 
6o • ---rc- 4>o ; al = ---rc- 4>2; ... ; 8m = ---rc- cflm+l ' 

where in Eq. 5-22 

2 (1 - cfll). 
c = 

1 + cfll 
When the Case 2 is chosen, the vector 

~0 - ~~. Bl 
1 + c 

c o' = -c- <fl 2; . . . ; 

where in Eq. 5-24 

c • 
1 - 4>1 
-~-1-

5-4 Model Application 

Bm 

(5-22) 

(5-23) 

! is 

1 + c 
= -c- cflm+l, 

(5-24) 

(S-25) 

In order to demonstrate the validity of the re­
charge model developed above, the computationalresults 
of a case study are presented herein. The model was 
applied to the simulation of the flow at the large 
karst spring at t he source of the Trebisnjica River 
in Yugoslavi a. The drainage area was determined to be 



926 km2. The estimated stat istical parameters of the 
springfl ow, assuming that the ser ies is stati onary, 
have been det ermi ned or Graupe et a! · • [1975) as : the 
mean daily discharge q • 45.36 m /s . , the variance 

of the dail y flow o2 =u2270.8 resulting i n t he stan­
dard deviation c = 47.65, the first ser ial correlation 
coefficient r

1 
= 0.937. 

Data avai~itity. In addition to daily observa­
tions of the spr ingflow from January 1, 1954 until 
Octo~er 31, 1967 (on which date f i lling of the 
Grancarevo Reservoir began , res ulting in maximum water 
depth a t the Spring of about 70 meters), the amount of 
daily precipitat ion was observed and recorded at 21 
rainfall gauging stations unoven,ly distributed over the 
drainage basin. The rainfall observations are avail­
able from January l , 1954 until December 31, 1967. How­
ever, almost every station had some discontinuities i n 
observations . 

Other data important in rechar ge modelling suchas 
evaporation (or effective precipitation) , snow pack and 
snow molt, and the area over which the observed preci­
pitation record is representative were not available. 
For t hat reason no attempt has been made t o incorporate 
these fact ors into the present study despite the fact 
that they may have an i mpact on the r esults . 

Data preparation. For the reasons explained above, 
the precipitation data used in this study were prepared 
as follows: 

21 
= _1_ ~ I 

Pt n I. Pt,j t,j' 
pt j=l (S-26) 

where npt is number of observation stations at which 

the recor ds exist for t he day t, namely 
21 

n l I . ' (5-27) pt j•l 
t,) 

with pt = the arithmetic average of precipitation es­

t i mated from t he available observations over the drain­
age basin during t he day t, pt . = the rainfall ob-

' 1 
servation at station j on day t, and "It . is the 

' J 
indicator function defined as It· . = 1 

,) 
if observation 

of p . exist s , and I j • 0 otherwise . 
t, J t, 

The observed precipitation records were given in 
mil limet ers per day. These were converted t o the uni~ 
commensurable ~<o·i th the observed discharge (m3/sec). The 
trans formation f actor for the given drainage area is: 
1 mm/day = 0.001 926 100 (l/86 ,400) o 1Q.72 m3/sec~ It 
was found that the average rainfall is p = 53 .73 m~/sec , 
so that the runof f coefficient is C = q /p = 45 . 36/ r u 
53. 73 • 0. 894 . 

Based on the data described above , computations 
were performed for two distinct conditions of the 
drainage basin as fo llows: 

A. System identification over d:ry periods. The 
definition of the dry period is somewhat ar bitrary, but 
rather strict condit ions have been imposed. For the 
purposes of this analysis, an event observed on day t 
was regarded as suitable

3
for computation i f no precipi­

tation greater t han 10m / sec (approximRtely 1 mm/day) 
occurr ed during t hat day and the two days preceding t he 
day t . In ot her words, it was assumed t hat , when the 
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above conditions were satisfied, ther e was no recharge 
to the underground aquifer. With q' (t) = 0, Eq. S-4, 

r 
when transformed i nto discrete form and for a time 
unit At = 1, has a sol ution 

(5-28) 

where the symbols are as defined previously. The pur­
pose of the identification was to estimate par amet er ~ 
This was evaluated by several approaches . 

The first approach was based on the average value 
of the coeffici ent ct a ln(q~_ 1 ;q~) evaluated for 

all values of t for which the required conditions 
were satisfied . It was found that c = 0.065129, from 
which, for Case 1 of Section 5-2 , t he par amet er ~l 

given by Eq . 5-12 is 

2 - 0.065129 
~1 = 2 + 0.065129 °·9369 . (5-29) 

For Case 2, the par ameter 91 is given by Eq. 5-13 as 

.....,,.......,_-,1..,...~ " 0 . 93 88 . 1 + 0.065129 

However, when the parameter 91 is evaluated by 
Eq . 5- 28 , 

~1 " e-c • e-0 .065129 = 0.9369 

is obtained . 

(5- 30) 

(5-31) 

The second approach i s based on the least squares 
estimate of the first serial correlation coefficient 
of the observa~ions satisfying the required conditions 
(not the first correlation coefficient for the total 
springflow record). For the estimated values of r 1, 
following the reverse procedure of that given by 
Eqs . 5- 29 through 5-31, the coefficient c is estimated 
as follows: 

For Case l , Eq. 5-23 gives 

c = 2(1 - 0.985) 
1 + 0.985 

0. 042901 . 

For Case 2, 
1 - r

1 

Eq . 5-25 gives 

1 - 0.985 
0.985 • 0.043841 c= ---= 

rl 

From Eq . 5-31 i t follows that 

c = ln(l/r1) = l n(l/0 .958) = 0.042907 . 

(5-32) 

(5-33) 

(5-34) 

Thes e r es·ul ts point to the fact that the estimated 
model parameters, ~~ and c, are essential ly the 

same for t he two cases . However, the method of estma­
tion affects the magnitude of the parameter c signi­
ficantly, even though the parameter <1>1 remains 
almost unchanged. 

B. Identification of t he system under genera~ 
conditions . r t is inconvenient and mathematically in­
correct to treat the syst em piecewise according to the 
hydrologic conditions prevailing at different time 
periods . Hence, est imation of the parameters to be 
used in t he s i mulation of the syst em under rather 
gene ral conditions is r equired. Thus, a. compl ete set 
of the available observat ions should be used to 
estimate the par ameter vector 1· 



The model oarameter vector ~ is evaluated for 
the precipitati~n functions given-by Eq. 5-17. From 
the vector ~. the vector a is evaluated for Case ' l 
and Case 2. -Aspects of the size of the model, m, are 
treated by simpl y evaluating the model parameters and 
the goodness of fit for various values of its size . 
The parameter vector ~ is estimated by the least 
squares method, whereas the goodness of fit is measured 
by the ratio of the mean square error and the esti­
mated variance of the process being fitted . In the 
case of the springflow record, 

~= 

2 a 
em 

2 
aq (5-35) 

where a:m is the mean square error (MSE) estimatedby 

2 a em 

N 
1 t 2 

N-:r L em' 
t t=l 

and o2 is the estimate of the variance of q 
change flow N 

2 1 t u -2 
C1q = N -1 L (qt - q) • 

t t .. l 

with q in Eq. 5-37 estimated by 

q = _1_ 

Nt 

(5-36) 

the ex-

(5-37) 

(5-38) 

In Eqs. 5-35 and S-36, m denotes the size of the 
moving average model of Eq. 5-21. 

Figure 5-l gives the MSE, o2em' for the precipi­

tation function given by Eq. 5-17 when the model is 
regarded as stationary for m = 1, 3 , 5. From this 
graph, it can be seen that the simulation does not 
improve significantly as m increases from m = 1 to 
m = 3 and m = 5. More importantly, this graph shows 
that the variation of the daily springflow that cannot 
bo explained by the ARMA(l,l) is only l ess than 8.0 
percent of the total variation of the daily springflow, 
-..·hich is estimated to be 2270. In addition, Fig. 5-1 
~hows the MSE, evaluated in an indirect manner, for 

the ~~(1,0). The ARMA(l,O) is, in effect, the first 
order autoregressive model. Thus, from the estima~ed 
first serial correlation coefficient, r 1 = 0.937, and 

. ·2 2 ·2 -2 from the express~on cr ( 1 - r
1
)o , a = 277, or 

e q e 
s lightly over 12 percent. This result is plotted for 
m .. 0. 

Table 5- l shows the parameters Bj (j c 1, ... ,m), 
where m = 1 , 3, and 5. For each model size, m, the 
parameters are evaluated for Case l according to Eq. 
5-22 (upper line) and for Case 2 according to Eq. 5-24 
( lower line) . Figure S-2 depicts graphically the para­
meters of Case 1. Notice that the sum of the para­
meters, ra. for each part icular model size is very 
close to the runoff coefficient, Cr = 0. 894, as it 
should be. 
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Table 5-l. Parameters of the Stationary Recharge Model for Linear Precipitation Functions . 

l.'-1odel 

~ 1 2 3 4 s l:B Par ameter 
,;iz.e 

. 
m P a r a m e t e r v e c t o r ! c 

1 0.8859 0.8859 0. 1211 
1 

2 0 .8859 0.8859 0.1289 

l 0.7906 0.1269 -0.0310 0.8865 0.1300 
3 

2 0.7906 0.1269 ·0.0310 0.8865 0.1390 

1 0.7956 0.1298 -0.0398 0.0314 -0.1318 0. 8852 0.1288 
5 

2 0.7956 0. 1298 -0.0398 0.0314 -0 . 0318 0.8852 0.1376 
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Fig. S-2. Estimated Parameter s , S, of the MA Model for Recharge for 
Model Site m • 1, m • 3, and m • S. 

The preceding results confirm that , for a reason­
able good prediction of the springflow based on precip­
itation, onl y a f ew parameters of the ARMA model mus t 
be est imated. Furthermore, since the springflow simu­
lation by the A~~ model is satisfnctorily good , 
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acceptance of its part. i.e . , t he MA model for recharge , 
is justified. Using the parameters of this ~" model 
and precipitation, the r echarge, qr (t), of Eq. 4-36 

can be estimated for either the natural or modified 
conditions of the hydrologic system. 

,i 
I 

' I 

I 
I 
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Chapter VI 

IDENTIFICATION OF THE SYSTEM 

In attempting to identify 1:he parameters of the 
hydrologic system described in previous c hapters, the 
existance of two conditions must be kept i n mind. Those 
conditions were defined as natural and modified condi­
tions corresponding to the planning and operation 
stages of the storage, r espectively. 

Depending on the object ive of the system identifi­
cat ion , the system conditions, and a number of factors 
characterizing t he drainage basin under consideration , 
various pr ocedures of system identif ication can be 
opplied . A precise out line of the procedure to be used 
in each particular case seems not feasible. Instead, 
the method of identification is chosen according tothe 
fi eld conditions. 

The i dentification of the surface flow components 
is of no concern in this study. The following is a 
brief discussion of t hose system components which are 
used in the optimization scheme and an outl i ne of the 
methods for the undergr ound storage subsystem 
identificat ion. 

As already outl ined, performance of the underground 
~torage ~ubsystem is usually affect ed by the system 
modification . However , it is assumed that the outside 
component entering the subsystem, namely the recharge 
ttr(t), remains independent of the modification i ntro­
duced . As a result of this assumption , the parameters 
uf the recharge model identified under natural condi­
tions are regarded val id after the reservoir has been 
constructed. A method to determine the parameters of 
the recharge model was described in Chap1:er V. Thus, 
the recharge qr (t), along with the surface flow com-

ponents is assumed to be known. 

b-1 Surface Reservoir Geometry 

In order to carry out the pr oposed opt i mization, 
rhe surface reservoir geometry must be identified. Two 
components are of i nterest: ( 1) water content, S(h); 
and (2) surface area, Ar(h). According to the assump-

t ions made in Chapter IV , these two geometric components 
;J rc easily defined from t opographic maps and surveying 
u:1ta gathered prior to the system modification. The 
surface reservoir content, S(h), is then described as 
:1 function of the water t abl e el evation measured either 
from sea l evel or from an arbitrary reference point 
IYevjevich, 1959]. Some form of polynomial may beused 
T\> best fit the volume to l evel relationship. Li kewise, 
the reservoir area, 1\ (h) , may be described by a 
polynomial fit. 

In addition to S(h) and Ar(h), under some 

··unditions, a functional relation, Ar[S (t)], may be 

Jcsircd to help avoi d lengthy computation of h from 
r.hc known values of S(h). This relationship does not 
·•ppcar to be difficult to establish. 

<>· 2 Underground Subsys·tem Geometry 

In Chapter IV, magnitudes of W and V were 
.1ssumed to. be known. They were defined as underground 
water content up to the ho~izontal water level of the 
surface subsystem and the. groundwater table, 
n·spcctively, as shown in Fig. 4-l. 
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According t o the assumption of the existance of an 
impermeable barri er that encompasses the underground 
subsystem, the magnitude of W can be defined as a 
function of the same elevation, h, that is used for 
identification of S(h) . Additional requirements are 
that the impermeable barrier and the effective rock 
porosity , y , be defined. While the former is beyond 
t he scope of this study, some remarks concerning the 
latter are given below. 

The vo lume V is not defined by purely geometric 
components of the system. It can also be regarded as 
a hydraul ic character istic of the underground storage 
subsyst em for the fo l lowing r easons. First , besides 
being dependent on t he effec1:ive porosity, y , and the 
surface subsyst em elevation , h, the value V also de­
pends on the shape of the groundwater table and the 
complex porosity structure . For that reason, system 
identification may require a l arge amount of data to 
cover a wide range of conditions that may exist. Secmd, 
as pointed out, the hydraul i c conditions of t he under­
ground subsystem after construction of the surface re­
servoir may be distinctly different from the ones that 
exist under nat ural conditions . Thus, the system 
identification under the latter conditions may not hold 
under the former . From this it can be concluded that 
the process of identifying the V(y,H,h) r elationship 
may be expensive and somewhat time consuming. 

For identif ication of V, i t is assumed that 
prior to the reservoir construction, a number, say m, 
boreholes were drilled into the underground subsystem 
and that observations of gr oundwater levels were re­
corded. Let the observations be given in the form of 
vec1:ors ~(t) , t = 1,2, . . . ,N, where 

(6- 1) 

With available observatjons of the boundary conditions, 
i.e., the water table el evat ion h(t), t = 1,2, ... ,N, 
at t he contact of the surface and underground sub­
systems, the vector of the l evel difference can be 
established as 

.Q.Ct) T [51 (t), ... ,6 (t)] = H(t) -h(t) 
m -

(6-2) 

With the knowledge of H(t) and h(t) the hyper­
surface of the groundwater t abl e can be approximated. 
When the effective porosi ty, y, is known, the volumes 
can be determined and recorded as a time sequence 
V(t), t = 1,2, ... ,N. Next, a relationship between 
V(t ) and D(t ) i s postulated and its parameters 
evaluated. -

A possible model i s examined by means of an 
example . Let the desired relation be assumed as 

• T T v = ~ Q + Q ! Q' (6-3) 

where ~ denotes volume estimated by means of the 
observed vector D, and A and B are matrices of 
const ants of sizes m x 1 -and m x m, respectively . 
It is desired to defi ne A and B so as to minimize 
the sum of squares of errors over-al l t = 1,2, ... ,N. 



The problem is solved by solving a set of equations 
representing partial derivatives with respect to the 
unknown parameters A and !• namely 

(6-4a) 

and 

i a T T ; <l! {V - ~ Q + Q ! Q} = Q. (6-4b) 

It can be easily shown that, even with such a 
simple rel ation as that assumed by Eq. 6-3, a large 
number of parameters is needed (m + m2). It can also 
be shown that the above set of equations involves com­
plete polynomials of order f our. 

To avoid the drawbacks stemming from a l argeamount 
of computation, a special mathematical technique des­
cribed by Ivakhnenko (1970, 1971] can be used. The 
technique is called the Group Method of Data Handling 
(GMDH) . Its essence is solving a number of small pro­
blems instead of a large one, thus avoiding inversion 
of large matrices. For example, if m = ~· the size 
of the matrix formed by Eq. 6-4 is (m • m ) = 8 +64 =72. 
However, computation can be reduced by the GI-1DH to 
solving seven problems with three paramet.ers each. 'Th.ls, 
instead of inverting a 72 x 72 matrix, seven matri ces 
of size 3 x 3 are to be processed . 

In brief, the GMDH can be described as fol l ows: 
Let there be eight variables , say x1, ... ,x8. It is 

postulated that every t1-10 variabl es can be modelled in­
to another variable say, y

1
,y

2
,y3, and y4 , as 

and 

yl al,l xl + a1,2x2 + al,3xlx2 

Yz a2 ,1 x3 + a2,2x4 + a2,3x3x4 

y3 = a3,lx5 + a3,2x6 • a3,3XSX6 . 
y4 = a4,lx7 + a4,2x8 + a4,3x7x8 · (6-5) 

From Eq. 6-5 the parameters a .. , (i = 1, ... ,-4; 
1 ,) 

j 1, ... ,3) are estimated by solving four sets of 
three equations. With the parameters a .. , estimates 

l' J 
of yi values are obtained, which are then modelled 

into z variables, say by 

and 
(6-6) 

Next, parameters b
1 1, ... ,b7 - as well as z1 , - ,.) 

and z2 are estimated. Finally, : 1 and z2 are 

described by another variable, say V, as 

V = c
1

z1 + c2z2 + c3z1z2, (6-7) 

which is t he desired mathematical description of t he 
volume of the underground storage. 
6- 3 Identification of the Exchange Flow Model 

Some appealing forms of mathematical relationships 
for modeling the exchange flow, q (t), were outlined 
in Section 4-4. Also, special cas~s were discussed· in 
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Sections 4-4 and 4-5. Once a form of the model is 
chosen, it is necessary to find: (a) the satisfactory 
model size m of Eq. 4-38, and (b) to evaluate the 
model parameters. 

The actual procedure for obtaining the answers to 
the above consists of evaluating the parameters of 
models of various sizes and comparing the goodness of 
fit of each model size. Selection of the proper size, 
being a matter of judgement, is somewhat arbitrary. 

In addition to the V(t) and W(t) series, 
identification of the underground storage subsystem re­
quires that a sequence of observed exchange f low, 
qu(t), be available. This is obtained when the value 

of dV(t)/dt of Eq . 3-12b is substituted int o Eq. 3-12~ 
from which it follows that 

dS(t) 
qu(t) = ~ - qc(t) - qd(t) - qp(t) + qb(t) 

+ q (t) + q (t) • e g (6-8) 

wnere the symbols are as defined in Chapter III. 

If GMDH is used as a procedure to identify the V­
model , then the qu -model can be thought of as an addi-

tional level of computation, where qu is a function 

of a transform of V and W instead of variable v 
alone. 

6- 4 Porosity of the Underground Subsystem 

Effective porosity of an aquifer varies greatly 
over a drainage area. Usually, an estimate of-the 
average effective porosity of the subsystem is suffi­
cient to eval uate the effects of the underground storage 
on the surface reservoir. The estimation is deduced 
from hydrologic observations taken over representative 
time periods characterized by specific hydrologic con­
ditions. A method to determine the effective porosity, 
y, over l arge areas is described by Torbarov [1975]. 
It is based on tne evaluation of the amount of outfl ow 
from an aquifer using the method described in Appendi~ 
A, or a similar procedure. Under the circums~ances 
that a number of boreholes over the subsurface basin 
exist, it is possible to compare the average water 
tabl e drawdown with the volume of water outflow from 
the subsystem. To that end, let the decrease of vomme, 
AV, be defined as 

t::.V = V - V 
0 t 

(6-9) 

where V
0 

is the initial aquifer content, and Vt is 

its content at time t. Furthermore, let the average 
drawdown, be defined as 

where H. 0 
l., 

is piezometric level at bol:'ehole i at 

time t = 0, and H. t 1, 
is the observation at time t, 

for i = 1, ... ,m. Then the average effective porosity, 
y, can be computed as 

t::.V 
y =A.bH (6-11) 

where A is the horizontal area of the aquifer . 



Chapter VII 
OPTIMIZATION AND OPTIMAL DECISION POLICY 

7-1 Preliminary Remarks 

It appears that the most suitable optimization 
method for solving problems associated with reservoir 
storage planning and operation is dynamic programming, 
for it handles discrete sets of numbers ·rather than 
continuous mathematical functions. This technique has 
limitacions which are encountered in solving large­
scale multidimensional problems. Nevertheless, under 
certain conditions dynamic programming remains the 
best method because of an innovation cal led decompo­
sition . Detailed discussion concerning various aspects 
of dynamic programming is beyond the scope of this 
study. It can be found in numerous publications. 

The two basic classes of dynamic programming 
problems are: ( 1) the resource allocation problem, 
and (2) multistage dynamic optimization. The former 
class is self-explanatory , while the latter refers to 
the selection of an optimal policy in tirne. The multi­
stage optimization can be carried out either forward 
or backward. In this study both classes of optimization 
described above are utilized . The multistage dynamic 
optimization described above are utilized. The multi­
stage dynamic optimization will be carried out forward. 

There are t wo types of var iables associated with 
every dynamic programming (DP) problem: state vari­
ables, and decision variables. As applied in this 
study to water allocation , the state variables denote 
the total amount of water allocated, hence they de­
scribe the state of the system. The decision variables 
tn this case are the amounts of water given to each 
economic activity . These variables transform the state 
of the system from one value to another. Constraints 
describe the limi·ts imposed on these variables. The 
region from which variables can be chosen without 
violating the cons train~s is called the feasible region. 

Problems that can be solved using dynamic pro­
gramming must sat isfy the following three conditions 
[Bellman, 1962): 

(l) The return from different activities can be 
measured in common units, 

(2) The return from any activity is independent 
of the allocation to another activity, and 

(3) The total return can be obtained as the sum 
of the i ndividual returns. 

In the r esource allocation problem treated in this 
~tudy , the above conditions are satisfied. However, 
in the rnul tistage dynamic optimization, as indicated 
in Sect ion 3-3, there is some doubt t hat this is true. 
Except for some marginal consideration [Hall and Dracup, 
1970] , the dependency of decisions has not been thor­
oughly treated in the literature . 

The specific problem that concerns this study is 
the optimal policy of water release under the condition 
1>f joint surface-underground storage. The underground 
(•xchange flow is an input to the surface reservoir; 
therefore, it is a feedback ~recess and it can be ex­
pected that some iterative procedure wil l be involved 
in finding the optimal policy. To cope with these 
Ji fficulties , a multilevel optimization approach is 
proposed. The first level is performed by the resource 
.II location procedure. It can include .several subl evels 
,,f optimization. The next section is devoted to a de­
tailed discussion of the mathematical methods needed to 
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perform one sublevel of optimization . Additional sub­
levels represent a repetition of the techniques des­
cribed. The essence of the procedure in each level is 
aonditionaZ aZZ.ocation. Conditiona,l allocation can be 
thought of as a contigency plan; it gives the opt imal 
allocation for any future decision, whatever the 
future decision happens to be. 

The second level of optimization is performed by 
the multistage dynamic optimization scheme, which is 
based on the final results of the first levels used. 
This optimization level is outlined in Section 7-3 . 

7- 2 Resource Allocation Problem 

Assume that there are n economic activities 
competing for a total amount of a resource X. Let 
each activity generate the return of g. (x.) monetary 
units for allocation of x. units of th~ tesource. 
For computational conveniehce, it is assumed that X 
is a number belonging to a discrete set [x ] • 
[ .:x:., ••• , :::., ••• , .:r: ] , that is Xc [x]. This assures that 

1 J m 
the computation is performed on ly over 
crete values. It is also assumed that 
constant , V j " 2, ... ,m. 

a set of dis­
:::j - .:r:j - 1 • 

According to the assumption stated in the Section 
7-1 , the total return can be expressed as 

n 
R(x1 , ... ,x )= Lg.(x.), 

n i " l 1 1 

subject to the constraints 

X E [x) , 

and 

(7-la) 

(7-lb) 

(7-ld) 

(7-le) 

Where a1 > 0 is the lower limit of the allocation to 

the i-th activity, Vi= l, ... ,n. 

The problem of optimization arises from the fact 
that there are many ways in which a limited amount of 
the resource X can be allocated to the n economic 
activities. Yet, only one or a few of them are op­
timal. This problem is easily solved using dynamic 
programming. Detailed descriptions of the procedure 
involved in obtaining the opt i mal solution of Eq. 7-la 
can be found in most texts on optimizati on. 

A generalized form of the recursive relation 
which evo 1 ves from the process of max.imi zing 
R(x1, ... ,xn) is 

fi (X) • max {gi (xi) + fi_ 1(X- xi) } 
x. 

J. 

i =l , ... ,n 

C7-2a) 



x c [xl , 

and 

x1 + ... +xi~ X, 

in which, when i • 1, by definition £1_1 (· ) z 

fl-1(•) • fo( · ) : O. 

(7-2b) 

(7- 2c) 

(7-2d) 

(7-2e) 

The meaning of the inequality constraint (IC) of 
Eqs. 7-le and 7-2e is that the total amount of the re-
source X need not be allocated. Instead, only that 
quantity of the resource which gives the maximum return 
is used, while the remaining portion remains unal­
located. 

f
1

(X) (7-4a) 

( 7-4b) 

(7-4c) 

x c (xJ , (7-4d) 

and 

( 7-4e) 

The constraint 7-4c is redundant to the constraint 7-4e, 
hence the former can be dropped out . Furthermore, since 
x

1 
~ X, the right-hand side of Eq. 7-4a becomes 

(7-Sa) However, in rare practical problems, the situation 
requiring equality constraint on the total resource al­
location is encountered. In addition , understanding 
the physical meaning, computational procedure, and the 
obtained results of an equality constraint allocation 
problem (ECAP) is of a general academic interest. It with 
will also prove very useful in the sections that follow. 
For that reason, a brief discussion concerning the ECAP 
is presented. 

ln the ECAP, the constraints of the type 7-le and 
7-2e are strict equalities. The total amount of the 
resource must be allocated, regardless of the effect on 
the return. For example, this· occurs when the reservoir 
capacicy is exceeded. The resulting spillover may ad­
versely affect downstream areas . All the other expres­
sions (Eqs. 7-1 and 7-2) associated with the previously 
considered inequality constraint allocation problem 
(ICAP) are also valid for the ECAP. 

Clearly, the optimal policy of the ECAP wfll be 
different from that of the ICAP. In order to find the 
difference in computational procedure for -solving the 
two problems, let the generali zed expression of the 
allocation problem formulation be rewritten as: 

and 

xi ~ ai 

xi~ X , 

X £ [ x) 

x. 
1 

i•l, ... ,n 

, 

xl + .•• + xi " X • 

(7-3b) 

(7- 3c) 

(7- 3d) 

(7-3e) 

It can be seen that there is no difference in computa­
tional procedure between the ECAP and the !CAP for 
i = 2, ••. ,n since Eq. 7-3a is exact ly Eq. 7- 2a. How­
ever, the difference exists for i • 1, and this situa­
tion warrants additional comment. Keeping in mind that 
when i = 1, the function fi_ 1( · ) = f

0
( ·) : 0, there-

written set of equations of the form 7-3 becomes 

and 

x > a 
- 1 

X c [x) . 

(7-Sb) 

(7-Sc) 

Therefore, the computational procedure of the ECAP is 
different from that required to solve the !CAP for 
i = 1 only. Having the best return, f (X) , generated 
by allocating the quantity X of the r~source to n 
activities, the optimal policy can be found. 

Consider now the optimal return, fn(X), obtained 

under the conditions of the ECAP of Eq. 7-3 . For 
clarity of notation , define f 1:1;.) = f (X = xj) for 

n J n 
all j = l, ... ,m, so that X c [x] s [;c 1, . .. ,xm]. In 

this case, the optimal policy of any allocation X= x. 
can easily be found from the computational algorithm. J 
Let it be described by a vector of the optimal al­
locations, 

x; (xj) 

x; (xj) 

x• [f (X., x .)] = x*(x.)= 
- n J - J 

, y. j 1, ... ,m , (7-6) 

X* (X.) 
n J 

* • 
where xj • x1 (a: j) + ••• + xn (zj) . The optimal policy 

of Eq. 7-6 can be regarded as a conditional allocation, 
that is, as the optimal allocation obtained by solving 
the ECAP under the condition that there is exactly an 
amount of the resource X = xj to be allocated. When 

the problem is solved for all values of j = 1, ..• ,m, 



t he function f n (X) is obtained. Furthermore, 

every particular value of X = x. 
J 

is evaluated by the vector 7-6. 

the optimal 

for 

policy 

Knowing the results of the ECAP, and the corres­
ponding optimal policies of Eq . 7-6 , the next level of 
~ hierarchical dynamic optimization can be carried out. 
lienee, one operates 1~ith a single return function , 
fn(X) , instead of n r eturn functions, g

1
(x

1
), .. . , 

1! (x ) . The optimization process in this l evel yields 
n n * 

the optimal value, x = x ., for which th.e optimal a l -
J * locat ion to tho individual activities, x (x .) , is de-

fined by 7- 6. - J 

The preceding discussion has demonstrated the 
application of the ECAP in solving multilevel dynamic 
programming prob l ems f requently encountered i n r eser­
voir operation . As already outlined, it is particular­
ly usefu l for those systems which occasiona l ly can be­
come uncontrollable and the adverse cffocts of the 
'tncont:rolled output are known, as in tho case of 
reservoir spi l lovers . Actual methods of embedding 
t he results of the ECAP int o a multistage dynamic op-
t i.rni::ation is demonstrated i n the next section . 

7- 3 Multis tage Dynamic Optimization 

Optimal utilizat ion of water resource from a 
J'l·sorvoi r is achieved if the amounts of the resource 
ll~l·d during different time periods of the reservoir 
l ifetime consti tut e the optimal policy. It is im­
mcJ iately evident that the optimal policy depends on 
many factors. These factors are classified into three 
groups: state variables described by a state vector 
2r • decision variables described by a decision vector 

~~t , and input variables descri bed by an input vector 

lt. rt should be noticed that, for purposes of this 

d i scussion, the input vector, I , consists of variables 
'"h i ch arc both positive and ne&lti ve with respect to 
t ho system . It should not be confused with the input 
variable Qi' def i ned in Chapter III. 

The present sect ion describes a method for obtain­
ing the optimal policy of sequential water releases . 
1\ssumc that the system lifetime can be divided into \ 
dis.;rcte time units , t ~ 1,2, . . . ,Nt . There is a 

'tate vector, ~, associat ed with every stage t . 

!"here is a f unction T t ( · ) which transforms the state 

v~ctor ~-l of t he s t age t - 1 into the s t ate vec­

t <lr ~ of t he stage t . Furthermore, the decision 

vc:ctor is defined as a set of variabl es that can be 
<"<>ntrolled . Then, the state vector transformation can 
he Jcscribed by 

(7-7) 

'"hl•re -4 is the input vector as described previously, 

:u\d ~Vhcre 

(7-8) 

'" i til [§:t] and [i2tl being the discret e sets of ad­

missible values. These sets of admissible values are 
t c· rmcd feasible time regions of the respective vect ors. 
I n addition , these feasi b l e time regions must satisfy 
t hl' following conditions: 
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[§:t l e: (~] and [~] e: [D] , (7-9) 

where (S] and (D) are physical cons traint s on the 
system. -The computational scheme of dy~amic program­
ming requires that the set [S) be a set of discrete 
values, namely [§.] = ( (£

1
, . .. ,~) ]. 

The syst em effectiveness at the stage t is 
measured by the monetary performance i ndex, Rt(Qt). 

The objective is to maximize the sum of all returns 
generated fo r every s t age t = 1 , ... ,:-\ . This is ac-

compl ished. by sel ecting a particu lar set of the vector 
Q.t, say Q.t, V t = 1, . . . ,Nt . Hence , in mathematical 

t erms i t can be written 

~t Tt~-1' .4• ~) 

~ E: [~ J E: [E.J ' 

and 

The objective function of Eq . 7-lOa can be 
read 

FN (~) max {~ CQ,'I l + max 
t t ~ t " t Q.t 

t 

By ·a s imple anal ogy i t is obvious that 

N ~ 1 
t 

max L Rt CQ.t ) 
D t=l 
- t 

N ~1 
t 

l: 
t=l 

(7-lOa) 

( 7-lOb) 

(7-lOc) 

(7-lOd) 

rewritten 

Rt CQ.t) } 

(7-11) 

(i -12) 

Thus, the recursive mathematical for mulation of the 
multistage dynamic optimization becomes similar to the 
formul ation of t he allocat ion problem, notably , 

and 

Ft(~t) = max {Rt(Qt) + Ft-1 (~-l)}' 
Qt 

t = 1, ... , Nt 

~ £ [~] £ [QJ 

(7-13a) 

( 7- 13b) 

( 7- l 3c) 

(7- 13d) 

The function Ft (~t) is somet imes ca l led the state 

function. In ~his study the term state function is 
used interchangeabl y with the stage return. It s hould 
be pointed out that in the formulation of Eq. 7~13a , 

for t = 1, Ft - l (· ) = F0 ( · ) = 0, as i n the allocation 
problem. 

The remainder of this section incorporat es the 
components of the hydrologic syst em described in 



Chapter III into the above mathematical formulations. 
The system of Chapter III is first treated as a two­
state system. A distinctive feature resulting from the 
existance of feedback processes and the methods for 
solving this type of problem are discussed later. The 
variables to be used in the further discussion and 
their relationship to the vectors ~· ~· and ~ are 

outlined. The state vector, ~· consists of the state 
of the surface storage subsystem, St ' and the state of 

the underground storage subsystem, Vt, namely 

(7-14) 

Here, ~t should not be confused with St. 

The decision vector, ~· consists of allocations 

to each economic activity, which in the previous sec­
tion were denoted by x1, . . . , xn. Here, since the al-

location in time is required as well as the allocation 
among the users, the decision vector becomes 

xl,t 

x2,t (7-15) 

~ 

xn,t 

The input vector It; consists of all the vari­

ables that affect both the surface storage subsystem 
and the underground storage subsystem. Note that the 
natural outflow from the surface storage subsystem, 
which now becomes controlled release, is not a com­
ponent of ,4. Thus, 

(7-16) 

Matrices of constants , fo 
as follows: 

are denoted 

£n a[~ 1 
0 ~]. ( 7-17) 

a 2xn matrix with n the number of economic activi­
ties (as in Eqs. 7-1 and 7-15) , and 

1 
0 

l 
0 

-1 
0 

-1 
0 

0 
1 

(7- 18) 

Using Eq. 7-14 through Eq. 7-18, the transform function 
of Eq. 7-7 becomes 

~t .. Tt(~t-1' .!..t• Q.t) • §.t-1 + f.I .!.t - fo Qt I 

(7- 19) 

or, in explicit form, after it was rearranged, 

S • S + qit + qut - qto (7-20a) 
t t-1 

and 

27 

v = v 
t t-1 +q~-~ ­

+ q~ + ~ -

(7-20b) 

e g 
qt - qt ' and the term 

With the variables defined as above, and with the 
developments of the preceding section, one can proceed 
with the discussion of the multistage dynamic optimi­
zation. Keeping in mind that the principal goal is to 
optimize the resource utilization over the project 
lifetime as well as among the potential users . the 
total benefit can be expressed as 

+ ". + g t (X t)] + ... n, n, 

+ (gl N (xl N) + •.• + g N (x N )] 
' t ' t n, t n, t 

Nt n 

2 2 g. t (x. t) . 
t=l i=l 1, 1, (7-21) 

Here the function gi. ( · ) gives the return from the 
,t 

activity, i, during the time increment, t. 

The optimum return is obtained by maximizing the 
sum.of benefits given by Eq. 7-21 , namely 

N 
t 

max { 2 
X. t=l 
1,t 

i=l, . . . ,n 
t=l, ... ,Nt 

n 
I g. t (x. t) } ' i=l 1, 1, 

(7-22a) 

i u 
5t "' 5t-1 + qt + qt - (Xl, t + "• + Xn 1 t) > 

and 

Taking 

pressions of 
form 

(7-22b) 

( 7-22c) 

(7-22d) 

~ as defined after Eq. 7-20, the ex-

rewritten in the following 

n 
Eq. 7-22 can be 

Nt 
=max<I [max L gi,t(xi,t)]} ' · FN (SN I VN ) 

• t t t 0 t • l 
qt xi,t i•l (7-23a) 

0 
s.t . xl,t + ... + xn,t = qt 



V V + r u t t-1 q t - q t 

and 

(7-23c) situation an iterative process will be required to 
find the solution to the three equations 7-26b, 7-26c , 
and 7-26d . 

(7-23d) 

It is readily seen that the right-hand side of Eq . 
7-23a can be written as 

FN (SN 
t t 

Nt 
max L 

t=l 
(7-24 ) 

,.,here f ( ·) is the solution to the e,quali ty con­n,t 
straint allocation problem as outlined in the preceding 
section, with 

and 

o n 
fn t(qt) = max L g. (x. t)' 

' X. i=l l,t 1, 

x. < qo 
l, t - t. 

0 
qt e: [xl • 

l,t 

= qo xl ,t+ ... +xn,t t' 

Finally, the mathematic~! formulation of the 
stage dynamic optimization problem becomes: 

Nt 

FN (SN , VNt) = max L Gt (~) , 
t t 0 t=l 

qt 

st st-1 + 
i 

qt + 
u 

qt 
0 

qt 

vt v + 
t-1 

r 
qt 

u 
qt 

and 

u 
qt = ~cst-1' vt-1' st, v t) , 

(7 -2Sa) 

(7 -2Sb) 

(7-2Sc) 

(7-2Sd) 

(7-2Se) 

multi-

(7-26a) 

(7-26b) 

(7-26c) 

( 7- 26d) 

where Gt (· ) replaces fn ,t (• ), since n, being the 

number of activities, has no significance in the 
further optimization process . The problem as formu­
lated by the set of Eq. 7- 26 fits into the general 
scheme of the multistage dynamic optimization given by 
the set of Eq. 7-10, for which a recursive relation is 
given by the set of Eq. 7-13. It should be noticed 
that the process described by the constraint set of 
Eq. 7-26 is a feedback process. 

In general, there is no explicit relation, which 
gives qu , satisfying the relations of Eqs. 7-26b 

t 
through 7-26d unless the exchange flow can be expres-
sed as a linear function in both S and V, or some 
other simplification is possible. For example, if 

q~ can be approximated by the system states at the 
u 

~tage t - 1 only, namely qt qu(St-l' Vt_1), then 
iteration will not be necessary . . In any other 
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7-4 Reduction of the S~ate Vector 

So far, only the generalized aspects of the multi­
stage dynamic optimization (MOO) were outlined. It 
was demonstrated that the MOO can be applied to a water 
resource project characterized by a feedback process, 
i.e., in which an underground storage subsystem is 
coupled with a surface storage subsystem. The mathe­
matical formulation of the MOO as presented in Section 
7-3 is known as two state variable (S and V) dynamic 
programming. The two state problem represents a time­
consuming computational process as compar d to the one 
state problem. Also, the computer memory required is 
much smaller in the one state variable problem. For 
that reason, the simplification in mathematical for­
mulation, with no loss of accuracy, may prove 
beneficial. 

A remark was made previously concerning the func­
tional representation of the underground exchange 
flow, q~, by means of the system states at the stage 

t - 1 only. The form suggested would eliminate 
iteration, but i t might also affect accuracy. Whether 
this simplification is feasible or not must be deter­
mined for each particular computational case . 

It is necessary to outline further possibilities 
of simplifications which may exist because of the 
nature of the water resource system under consider­
ation. To do so, the essence of the computational 
algorithm is examined in detail. To that end, the re­
currence relation of the mathematical formulation 
given by Eq. 7-26 is written in its general form, 
namely, 

and 

Ft(St' Vt) = m~x {Gt(q~) + Ft-1 (\-1' Vt-1)}' 

qt 
t=l, ... ,Nt (7 -27a) 

(7-27b) 

v t = v t-1 + q~ - q~ • 
(7-27c) 

(7 -27d) 

The stage return Ft(. , .) is evaluated at a set of 

discrete values of both state variables, S and V, 
by a computational algorithm consisting of several 
steps which can be described as follows: 

a) Take a particular value of the surface storage 
subsystem state S , say s . E [S], and at the same 

t t ,l 
time a particular value of the underground storage 
subsystem Vt, say vt,j t (V); 

b) Depending upon the observed values of 

q~ , there will be a set of feasible values of states 

of both the surface storage subsystem, St·l' and the 

underground storage subsystem, Vt-l' say st-l,k t 

[St_1] , and vt - l,~ £ [Vt_1), respectively. From this 

the system states can be transformed into St ~ . , t,1 



and V = v Each pair of values of St-l and 
t t,J 

Vt-l ' namely (st- l,k' vt-l,~), will determine a value 

of q
0 = 
t qk, ~; 
c) 

of q~ = 
Evaluate the return for every feasible value 
qk l' and its corresponding pair of values, 

vt:l,Z' from the relation (st -l , k' 

d) Find the maximum return over the whole set of 
pairs of the feasible values, (st-l,k' vt-l , Z)' to 
obtain the. best return corresponding to the chosen pair 
of values, (s 

1 
v .), namely 

t' • t,J 

e) Repeat the steps (a) through {d) to cover the 
whole set of pairs of values of the states St t (S] 

and V E [V) to obtain the function F (S , V ) . 
t t t t 

Assume now that at the stage t - there is only 
one value of the underground storage subsyst em state, 
Vt-l' corresponding to each discrete value of the sur-

face storage subsystem state, S , namely, that there 
t-1 

exists the following relation: 

from which the underground exchange flow can be 
expressed as 

q~ = qu[5t-l' vt-1(5t-l)' 5t' Vt] 

(7-31) 

Substituting Eq. 7-30 and Eq. 7-39 into the mathemati­
cal formulation of the multistage dynamic optimization 
of Eqs. 7-27 yields 

and 

Ft(St' Vt) • max {Gt (q~) + Ft-l (St_ 1)} , (7-32a) 
0 

qt 
t " l, ... ,Nt 

S S i + (S S V ) 0 

t '" t-1 + qt qu t-1' t' t - qt ' (7-32b) 

Keeping in mind that the computational algorithm as 
described previously by the steps (a) through (e) 
assumes two feasible values of the surface subsystem 
state, st-l and st' at the stages t - 1 and t , 

respectively, it is readily seen that Eq. 7-32c has a 
unique solution for V . \\ben this is inserted into 

t 0 
Eq. 7-32b, a unique sol ution for qt is obtained. 

With a value of q~ defined in this manner , t he return 
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is evaluated from Eq. 7-32a. Clearly , for the given 
value of the surface subsystem state, S = s i' and 

t t , 
for any value of St-l = st-l,i' there will be a value 
of the underground storage subsystem at the stage 

t, V = vt However, when the optimal value is 
t , 1 

chosen by step (d) of the above described procedure, 
there will be only one value of the underground storage 
subsystem uniquely corresponding to the value 
S : s . . Hence, the state of the underground storage 

t t , 1 

s~bsystem, Vt • Vt(St)' as assumed in Eq . 7-30. 

The described procedure eventually leads to the st age 
t = 1, whereby the values of the state V = V (S ) 

0 0 0 

should be known. The legitimate question can be 
asked: Does one know the initial state V correspond-

o 
ing to the initial value of the state S

0
? The answer 

is no . However, several other factors should not be 
overlooked. The underground storage cannot be con­
trolled directly. but rather it is controlled by con­
trolling the surface storage subsystem, since the 
surface and the underground subsystems are directly 
related. 

Therefore, the underground storage subsystem, 
Vt, cannot be held at any arbitrary level for a given 

value of the surface storage subsystem , St. Instead, 

there is only a limited range of feasible values of 
the state Vt for any given value of the state St. 

Thus, taking a convenient value of the state V
0 

to 

be associated with every value o.f the state 5
0 

should not affect significantly the evaluated returns. 
Yet, it greatly reduces the computation time and 
computer memory required. If the optimum is expected 
to be affected by the assumed initial conditions of 
the state V, it is easier in many cases to evaluate 
the optimum with one state variable and several 
initial conditions than with the two state variables. 

7-5 Dynamic Programming with Integrated Inputs and 
Outputs 

._lultistage dynamic optimization is essentially an 
allocation process in time, by which an optimal policy 
is obtained. This opt imal policy depends on the return 
function and is subject to dynamic constraints. The 
stage returns are evaluated at discrete time points and 
specified discrete values of the system state. The 
system behavior between the two discrete time points is 
assumed known. Often it is linea.rly approximated. 

The time intervals between the discrete points can 
be of various lengths . Computational effort for sol­
ving a dynamic programming problem depends on the num­
ber of time intervals . Reduction of computational 
difficulty by decreasing the number of time intervals 
oft en results in inadequate· accuracy . \Yben the time 
i nterval s are small, not onl y the number of stages in­
creases , but the number of discrete points of the sys­
tem stat e must also be increased to make them compatibE 
wit h t he system inputs and outputs over the given time 
interval. This may cause an increase in both the com­
puter memory and computer time requirements. 

As mentioned earlier, the time increments for 
medium and small reservoirs, particularly under the 
conditions of large variations in river flow, should 
be relatively small . This reduces errors caused by 



high variations of inputs. A hypothetical exampl e 
illustrates the situation which is frequently encoun­
t ered in dealing with a water resource project . Let 
the reservoir lifet i me be SO years; t hen N = SO x 365 
= 18,2SO days . Solving an optimization pro5lem with 
18,250 stages is out of the question i n most practical 
cases. If, on t he ot her hand , a t hree-month time in­
terval is chosen, then, in the cited example, there 
will be NT= N/'!' = 18,250/90 = 200; an acceptable 

number of stages. However, the accuracy of the com­
puted optimal policy may be insufficient when the time 
i nter val is t hree months . It is not enough to know t he 
three-month sum of the inputs and the outputs, since 
the realization of the time series should be known 
compl e tely . I n addi t ion , the simulat ion of t he be­
havior of the underground storage subsystem is based on 
the physical relation described by the states of the 
two storage subsystems . That is , i t is based on the 
eval uation of the exchange flow, q~, which in turn 

affects the subsystem s t ates . Such a feedback process 
cannot be described adequately only by t he init ial and 
the final conditions of a large time increment. 

A new method of computation is proposed here . I t 
is assumed that simplifications of the preceding 
sect ion (reduction of the st at e vector dimension) have 
been made. The proposed method is based on the assump­
tion that the allocation, q~, over the time interval of 
length '!' can be expressed i n t erms of the total 
allocation during t hat interval , Q~, namely 

(7-33) 

0 Here, qt is t he r e l ease of t he r esource during a t ime 

unit t £ [(T- l )t,Tt], with T = 1, .. . ,NT ~eing an 

index associated wi th the time interval s of l ength '!' . 
The continuity condition requires that the following 
condition be satisfied 

(7- 34) 

with t
1

_
1 

= (T-l)T , and t T = T'!'. The simpl est ex­

ample of the previous assumption is a uniform alloca­
tion each day over a three-mont h time interval. 

The objective is to decide what is the tota l 
amount of the resource to be used over the three-mont h 
time i nterval . According to the assumption described 
by £:q . 7-33, the return over the time interval of 
l ength ' is 

tT 
I Gt (q~) 

t=tT-l+l 
(7- 35) 

where Q~ is gi ven by Eq . 7-34. Usi ng the ob jective 

function with only one state variable, the optimal re­
turn can be expressed as 
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NT tT 
max L max{ L 
o T=l o t =t +1 

Qt qt T-1 

s . t. L q~ 
t 

(7-36) 

which is the new object ive funct ion to be solved joint­
ly with the constraint set. The last transition in 
Eq . 7-36 ~>tas made possible by virtue of the f act t hat 
t he i nner maximizat ion is an ECAP. 

The constraints must also be transformed t o accomo 
accommodate the new formulat ion. To that end, the 
·constraint operating on the surface storage subsystem 
for each time unit , t , is rewritten for the interval of 
l ength ' · Summing up the set of equat ions 

i u 0 
+ qk+l + qk+l - qk+l 

i u 0 
+ qk+2 + qk+2 - qk+2 

+ qi u 0 
k+3 + qk+3 - qk+3 

(7- 37) 

yields k+t . 
S = s + I: (ql u 0) 
k k L + qt - qt . 

+t t =k+l t 
(7-38) 

Let the beginning of the (k+l)-st time unit corres­
pond to the beginning of T-t h time interval. Then , 
t = k = (T- l)T = t1 _1 , and t = k+T = (T-l) T +' = T'!' = 
t
1

, so that Eq. 7-38 becomes 

S =S =S + 
T TT T'!'-T 

(7- 39) 

For convenience, the notation can be simplifi ed as 
follows : 

(7-40) 

where the correspondence of Eq . 7-40 to Eq . 7-39 is 
obvi ous . Fol lowing t he same reasoning, the second con­
straint can be rewritten as 

V V Qr - Qu T T-1 + T T (7-41) 

where v
1

_1 and VT are the states of the underground 

storage subsystem at the beginning and at the end of 
T-th time inteTval of length '!'. Q~ and Q~ are the 

summat ions of the rechar ge and the underground exchange 
flow, qrt and qu, respecti vely, over the same t i me 

t u 
i nterval , with qt = q} St- l' St , Vt-l ' Vt) · 

The specifi c nature of dynamic programming is re­
flected in the necess ity t o evaluate the stage return 
at a number of specified discrete values of the system 
state. The subsystems that are dealt with in this 
study are linked by a f eedback process. For t hat 



reason i t is not generally possi ble to f i nd a value of 

Q0 
that transforms the syst em state from one discrete 

t 
value to another when integrat ed over the time interval 
T. 

Let the 
cret e va l ues 

i 
ST 1 . = S ' - ,J 

state of t he surface subsystem take dis­
s1,1 , . .. ,sT, m' For a specific value , 

of the system state at t he beginning of 

time i nt er val T, and an assumed specific value of the 
decision variabl e , Q¥ = ~,k' the state of the system 

at the end of the interval T will be transformed into 

f 
S " sT- l ,j 

The value of 

+ ~ + Q~ - Q~ = S1(Q~,k lsT-l , j) . (7- 42) 

f S • s
1

( · ) is not necessarily one of the 

discret e values for which the stage return i s to be 
evaluated. Because of the dependence between V and 
S, the stat e of the underground storage subsyst em at 
the end of the interval T can be descr ibed by 

(7-43) 

wher e 

0 
QT,k given 

Conceptual visualization of the above process can 
be given in gfaphical form as shown by Fig . 7-1, where 
the curves S = s1 (· ) of Eq. 7-42 and V1 (· ) of Eq. 

7- 43 are constructed as functions of Q~ so that each 
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curve is parametrized by a discret e value of the stat e 

s = s1
. T-1 = sT-l,j 

Once the graph is constructed, it is possible to 
evaluate the stage return at a set of specified dis­
crete val ues of the state s

1 
as follows: 

(1) Select a specific value of the surface state, 
s

1 
= sT,i ' for which t he stage return is desired; 

(2) Drawing a vert ical line t hrough 5r • 5T ,i' 
the int ersections ...-ith the curves ST- 1 , j determine 

0 
the values of the output QT,j; 

(3) Maximize the return over all f easib l e values 
of ST-l' i . e ., find: 

(4) Find the value of the underground storage 
subsyst em s t ate , VT ' corr esponding to the pair of 

values Q~ . and s1 _1 . which maximizes the stage 
' J ' J 

return and denote this by vT , i = V1 Cs1 ,i) ; 

(S) Store the values 
u 

and QT; and, 
(6) Repeat st eps 1 through 5 for all values of 

ST " sT , i , i • 1 , . . . , m. 

---------- - , 
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I 

Storage '\! 

---------; 
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Fig. 7- 1. Empirical Functions Rel ating s
1 

and v1 to ST-l 

Time Series q~ and q~ . 
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Chapter VIII 

APPLICATION OF THE MODEL 

The application of the model described in the previous 
chapters is demonstrated by two examplds. The first 
exa1nple is based on a completely hypothetical set of 
data . It demonstrates the model appl ication to a 
hydrol ogic system described in general tc1·ms . llowever, 
si.mplification is made to reduce the number of state 
variables from ·two to one. 

The second example partially perta ins to Lake 
Powell. It shows the procedure for finding the optinnl 
policy under the specific conditions outlined in 
Section ~-5. In this example, data observed during 
:J.ctual reservoir operation ~~ere u~cd to identify the 
system. Tho economic model wns unavailable and it had 
to be hypothesi~ed. For this reason and due to some 
other factors to be discussed later, no conclusion con­
~crning the system ' s future operation should be drawn 
on the basis of results obtained by this computation. 

Common features of the two examples are that the 
J~ta are discrete sequences of monthly observations. 
J:ach year was subdivided into four periods , each or 
them three months long. Furth~:rmore, it was assumed 
Lh.tt t he water release over each period is uniform. 
N~vcrtheless. it can vary from one period to another 
;md from one ye:~r to another. Even though the return 
functions were hypothesL:ed, they were constructed to 
reflect customary higher water demands during dry sea­
~ons than during wet seasons. Evaluation of the re­
Lurn is based. on a five percent interest rate. 

11- 1 Example I 

Maximization of the gross benefit was obtained by 
M> lving a multistage dynamic optimi::ation problem. The 
<lhjcctive function is given by Eq. 7-36 1.•ith the state 
•·nnstraints described by Eqs . 7-40 and 7-41 . In addi­
Lcnn, constraint• reflecting tho 1ystem si:e are 
i m.:orporated. 

The mathematical formul:ltion of the problem i.s 

max 

c{' r 

NT 
( i l"r(Q~)} 
T=l 

• 5 Qi + Qu o 
ST " T -1 • T T - QT ' 

0 
0.:. ~.:. 24. 

(8 -ln) 

(8 - 1 b) 

(8-l c) 

(8-ld) 

(8-le) 
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and 

t ~ 1, 2, .. . , Nt . 
(8-lf) 

The above formulation is comput er processed for 
Nt ~ 120. This implies a sample si:e of ten years of 

monthly data. In addition, the number of stages of 
computation was ~T = 40, nnd • = 3. The terms 

i u o r 
QT . QT, Or :Jnd QT of Eq . S-1 are defined in .cq. 7-39. 

They represent summations of monthl y values of the 
cor responding quantities. The moving boundaries of 
summation over 40 three-month periods are defined as 

lower bound : t = ~- l - l = (T-1} t + 1 (8-2a) 

and 

upper bound: t .. tT = T t . (8-2b) 

This yields the respective limits (t T- l + 1, tT) 

( 1,3), (4,6). (7,9). ... , ( Ll8,120). 

which correspond to the time periods 

T = 1 , 2, 3, ... , 40 . 

The surface flow component~ of Eq. 7-20 oth<:r 
than the channel i nflow, q~. were assumed to be :ero, 
that is 

d 
qt " qP t 

e 
qt qg 

L 0 ' t = 1 , ... ,Nt (1!-3) 

so that 

i 
lit 

c 
qt . (8-4) 

ln order to eva) uatc the t:xchange flow, q~, of 

Eq. 8-lf, the following linear relationship wns :kssumcd: 

(8-S) 

From Eq. 8-la it is cl ear that the second s t ate 
variable, V, was e liminated from tho objective 
function according to the expl anation given in Sec­
tion 7-4 . In that section it was ~tated that tho 
initial value of the V-state at the beginning of the 
stage T ~ l is needed . This relati~nship was 
arbitrarily assumed as 

v 
0 

= 1. 07 'II' o' (8-6) 

where \'I is obtained by Eq. 
0 

S-5. It should he ob-

served that the condition rtquired i n Section 7-11 , 
namely that v be a function of s. is satisfied. 

Figure 8-1 shows the sequences of assumed dis­
crete monthly observations of t he channel inflow, q~. 

r 
and the recharge , qt. t = 1, ... ,Nt. The value of 

water released for r espect ive t ime periods i s descr.ilied 



by the four return functions, HrC ' ), as given in 

table 8-1 and Fig. 8-2, where the t ime period each re­
turn function refers to is indicated. As a l ready out­
lined, the water release during each month at the time 
per i od under consideration was assumed uniform. This 
fact is related to the requirements of Eq. 7-33 by 

(8- 7) 

where 

on the 
output 

0 qt is the quantity used in Eq. 8-lb t o carr y 

simultaneous process of integration of input and 
variables. 

Actual co.mputation was performed over discrete 
sets of points. The sets are constrained by the re­
servoir size and t he water release of Eq. 8-ld and 
Eq. 8- l e, respectively. The set of Q0 values con­
sists of nine val ues with increments oF three , namel y 

[Q~) = (0, 3 , 6, 9, 12 , 15, 18, 21 , 24) , (8-8) 

whi l e the set of S values i s given by 

... 
E 4 
Q> 

:§ 2 
0 
.c. 
(.) 

[ST) ~ [20, 30 , 40 , SO , 60 , 70 , 80 , 90 , 100, 

llO, 120]. (8-9) 

2 3 4 5 6 7 8 9 10 
Time, years 

i:~ 
0 I 2 3 4 5 6 7 8 9 ~ 

Time , years 

Fig . 8-1. Hypothetical Monthly Inflow (Upper Graph) 
and Monthly Groundwater Recharge (Lower 
Graph). 
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Fig . 8-2. Return Functions of a Uniform Water Release, 

Q~, over Three-Month Periods . 

The process of computation that is carried out for 
every stage T = 1,2, ... ,40 was described in Section 
7-S. Typical results of this procedure are presented 
graphically in Figs . 8-3 through 8-7 . 

Figure 8-3 gives the final values of reservoir 
state, sf , at the end of period T. These curves were 
obtained under t ·he condition that the r eservoir state 
at the beginning of the given time period was si , for 
various values of uniform water release Q~, and for a 

particular sequence of input data realized during the 
given time period T. Similarl y, Fig. 8- 4 gives the 
final state of t he underground subsystem, vf, under 
the above condition. Fig. 8-5 gives the sum of the 

exchange f lows, ~· obtained by evaluating q~ from 

Eq. 8- l f and summing them over the period (tT-l' tT) 
of Eqs . 8-2a and 8-2b. 

Table 8-1. Return Functions of a Uniform Water Release, Q~, over Three-Month 
Periods. 

Uniform Water Release Qo 
T 

Peri·od Month 0 3 6 9 12 15 18 21 24 

1 1-3 0.0 4.3 7. 2 9.1 8.5 7.2 5 . 8 4.2 3.0 

2 4-6 0.0 8. 3 15. 6 21.7 26.4 25 . 3 24.6 22 . 0 19 . 2 

3 7-9 0.0 9.5 17.6 23.8 28.9 32.0 34.5 33.2 32.0 

4 10-12 0.0 5.6 9 . 9 9.1 8.6 7.5 6. 0 4.6 3.2 
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Because of nature of t he computation performed , 
i t can happen that t he assumed values of uniform water 
r elease, Or, depl ete the reservoir below its mini mum 
allowable value (20). Under some other conditions, the 
spillover fr om a ful l reservoir can occur. These f acts 
are taken into account in the present scheme by virt ue 
of the results depicted in Fig. 8-6 and Fig . 8-7 . 
Figur e 8-6 represents wat er defic it, 0~, wit h res-

pect to what was assumed to be a uniform release. That 
is , it gives t hat quant ity of water that would have 
been released i f t he reservoir had been drained below 
the min~mum state at the uniform rate QT. Since the 
reservo1r mus t not be drained bel ow its minimum allow-
able cont ent, Q~ is nonexist ant . By t he same t oken , Q~ 
spil lover, Qs, results from having t he reservoir full. 
Thus , actual T r el ease i s obt ained by 

j=l20 

Fi g. 8-3. Final Val ues of t he Surface State Sf 
as a Function of Uniform W~ter Rele~se, ' 
0¥, and Initial Stat e, S1 , a t the 
Stage T. 
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Uniform Water Release Q~ 

Water Deficit, ~. with Respect to the 
Ass11.1med Uniform Release, Q~ . a:; a Functi<>n 
of Q~ and Initial State , S1 , at the 
St age T. 

Qrel = 0o _ Qn 
0

s 
T T T+ T ' (8-10) 

while the useful rel ease is given by 

(8-11 ) 

From Fig . 8-6 i t can be seen t hat the deficit occur s 
when the initial reservoir :;tat e, si, is l ow and the 

release rate , Q~. is relatively high. The spil l overs 

result from relatively high initial stat e, si, and 



Fig. 8-7. 
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relatively low release rate, ~· as sho"n in Fig. 8-7. 

tt is emphasized that the actual magnitude of the de­
ficit, Q~, depends not only on the initial state and 

rate of release, but also on the hydrologie sequence 
rcalited during the given interval. It sho~ld be 
not iced that the final reservoir states, S , of Fig . 
8-3 never violate the boundary conditions described by 
Eqs. 8-ld and 8-le. Instead, as soon as the sf 
reaches the lower boundary (Smin ~ 20) it coincides 

with it for all higher release rates. Also , when it 
touches the upper boundary (Smax a 120) it is identi-

cal with it for all lower release rates. 

From the results repr esented in Figs . 8- 3 through 
8-7 for every feasible value of the new reservoir state 
described by Eq. 8-9, the following is evaluat ed: 

- the optimum return, FT(ST) 

- the beneficial water release Q~en 

- the old reservoir state, ST-l' from which the 

system was transformed into the new state, ST 

- the state of the underground subsystem VT(ST) s 

vf, at t he end of the time interval T, and 

- the tota l value of the exchange flow, 

Table 8- 2 illustrates a typical summary of t he 
results obtained for every stage T = l, ... ,Nf . In 
this particular case, the results of the last stage are 
shown . From Table 8- 2 the maximum value is select ed , 
that is max F40 cs

40
) = 567.52 = F*. The corresponding 

540 
reservoir state at the end of period 40 is s•40=30 . 

Knowing the value of the reservoir stat e at the end 
of this time period, it is possible to f i nd the value 
at the end of the preceding time period. The procedure 
is carried back1~ard until the optimal policy is defined. 
The opt imal policy b given in Table 8-3 and Fig . 8- 8. 
The corre~ponding optimal rel eases constitute a sequence 
of a periodic nature as should be expected from the 
periodic return functions. Statistical properties of 
~>•atcr release during each period of the year are given 
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in Table 8-4. Fluctuat ions of the optimal r elease are 
r elatively smal l as indicated by its st andar d deviation. 

8-2 Example II 

This example utilizes sequences of actual data 
observed at lake Powell during twelve years of its 
operation . The reservoir characteristics are as 

6 follows: maximum reservoir capaci ty S c 27 ·10 max 
6 acre f eet, of which t he dead storage is S . = 2· 10 m1n 

acre feet. The reservoir content below approximately 

6 · 106 acre-feet cannot be used for power generation . 
For reasons of obtaining rounded values of stgrage 
states, the minimum storage was assumed 3·10 acre 
feet. 

Data aoZZeation. The process of filling the 
reser voir began···on January l, 1963, with a simultaneous 
observation of various data. The sequences of data 
available for this research represent the channel in-

f c e o low, qt' evaporation qt, and release qt. Also, 

surface reservoir states· St, underground storage, 
u Vt, and exchange flow, qt , were observed for the 

years 1963-1974 inclusive. Monthly values are given 
for t a 1;2, .. . ,Nt, where Nt • 144 (12 years of 

data). It is pointed out that the sequence of exchange 
flow, q~ , was obtained from the budget equation (see 

Eq. 6-8} and that the underground subsystem content, 
Vt ' is the summation of the q~, namely 

t 

vt = L q~ . 
val ( 8 - 12) 

Figure 8-9 represents monthly channel inflow, q~ 
(lower gTaph). The observed exchange flow, q~. along 
with the values simulated , q~, are depicted on the 
upper graph . Observed states of the respective sub­
systems S and V are presented in Fig . 8-10. From 
that it is seen that the reservoir has not yet been 
filled. This leads to the conclusion that the system 
never reached t he steady state. 

e It was already stated that the evaporation , qt, 

is a function of the area from which evaporation takes 
place. Thus, observed values , q~, which represent 

total evaporation from the lake suTface , were modelled 
i nto et, that is, the evaporation from a unit of sur-

face area. Average monthly values of et are glven m 
Table 8- 5 and graphically depicted in Fig. 8-11. 

Reservoir volume and area as functions of water 
elevation are shown in Fig. 8-12, while their functional 
relationship (assumed to be linear) is shown in Fig . 
8-13 . This relationship is given by 

Ar = 0 .0185 ~ 0.00546448 S , (8-13) 

where Ar is the reservoir surface area in mil l ions 

of acres and S is the storage content in millions of 
acre feet. Expression 8- 13 is needed in order to pro­
vide for a convenient evaluation of q~ at any state 

that t he surface reservoir happens to be. Equation 
3-11 is used to cal culate the evaporation, q~. ln 
Fig. 8-14 , the observed value of underground storage, 
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0
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Rt:turn functions , th·· 

monetary valuu:> uf w~cer r~ l casC's were not available. 
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ll·ngth , t .>. Tht• '"'attr rC'lrasL·:< :Jre 3s~uoaed un1 form 
within any ~ivt·n pe-riod tor .1ny lt:vd of output, 1)~ . 
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Table 8-S. 
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Monthly Evaporation, e , from a Unit of Reservoir Surface Area. 
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Based on these return functions and the results 
of system identification, optimi~ation of the reservoir 
operat ion was performed over a span of ~2 years f?r 
which inflow data exists. The mathemat~cal formulat~on 
of the optimization problem is 

NT 

= max c L H.r c<t;) l 
Q~ t=l 

S + 0~ Qu Qo ST = T-1 'T + T - T' 

Qi = { -T T Qi. 

(8-13a) 

(8-13b) 

(8 - 13c) 

Table 8-6. Ret urn Function of a Uniform Water Release over Three-Month Periods. 

Uniform Water Release Qo 
T 

Per iod Month 0 1 2 3 4 5 6 7 8 9 10 11 12 

I 1-3 0.0 3.2 5.3 4.6 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

II 4-6 0.0 5.5 9 . 9 12.7 13.4 12.5 11.0 9.5 8.0 6 .5 5.0 3.5 1.0 

III 7-9 0.0 6.2 10.5 14.2 12.4 10.6 8.3 6.2 4.7 2 .4 1.8 1.1 0.7 

IV 10-12 0.0 2.8 4.6 3.9 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 
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Table 8-7. A Summary of Typical Results 

J 5T- l(J) ST(J) 0::.-l(J) 

11 . 00 3.00 -.03 

2 5.00 5.00 -.04 

3 7 . 00 7 . 00 - . 04 

4 9. 00 9.00 -. 04 

s 11. 00 11. 00 -.04 

6 13 .00 13. 00 - . 04 

7 15.00 15.00 -. 04 

s 17 . 00 17.00 -. 04 

9 19.00 19 . 00 -.04 

10 21.00 21.00 -.04 

ll 23 . 00 13.00 -. 04 

12 25 . 00 25 .00 -. 04 

~7.00 :7.00 -. 04 

3~ 
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Pig . 8-15. Return Fut.ctions of a Uniform Water Release 
over Three-Month Periods. 

qte • Ar e = (0 . 0185 + 0. 00546448) S 
t-1 t t - 1 

t ,. l, ... ,Nt 

qo .. qe _ qc 
t t t • t • 1, .. . , Nt 

3. 0 ~ ST ~ 27. 0 , 

and 

0 
O.O~QT ~ l 2 .0. 

of Computation at the End of 

Q~(J) FT-l(J) 

. 28 299. 70 

- . 04 301.02 

- . 04 301.40 

-. 04 301.85 

- . 04 302.29 

- . 04 302 .90 

- . 04 302.86 

- .04 302 . 66 

- . 0-1 302.40 

- . 04 302.02 

- . 04 301 . 52 

- . 04 300.31 

-. 04 298.37 

the Stage. 

FT(J) 

302 . 71 

303 . 34 

303. 72 

304 . 18 

304 .61 

305 . 22 ~ 

305 . 19 

305 . 00 

304.74 

304. 36 

303 .86 

303.16 

300 .93 

t8-13d) 

(8-13c) 

(8-13f) 

(8- l 3g) 

(8 -13h) 

~en(J) 

11.48 

2. 63 

2.62 

2.61 

2.61 

2.60 

2.59 

2.58 

2 . 57 

2.56 

2 . 55 

2.54 

2.53 



The values of Q~, Q~. Q;, and Q~ are obtained as 

given by Eq. 7-39. Observe t hat q~ of Eq. 8-13f is 

given by q~ = Q~/t. In this example NT = 48, NT = 144, 

and T • 3, so that moving bounds of simul at i on are 
analogous to t hose of Example I. 

ln Eq . 8-13d, evaporat ion, q~ , was computed 

using only the reservoir state at the beginning of the 
given time int erval t. Of course , it is possible to 
perfor m computations using the average value of the 
areas A~_ 1 and A~. However, t his woul d r equire t hat 

an iterat ive computing procedure be int roduced. I t is 
felt that improvements due to this alternative approach 
would not warrant its implementation. 

2 8 

- 22 -• 4> 
20 ... 

0 
0 

co 
18 Q 

The computat iona l pr ocedure is very much similar 
t o that of Exampl e I. The only difference is that the 
exchange flow, q~, had to be carr ied on as a. semi-

state variable instead of V . The i ni t ial value of 
the exchange f low r equi red t t o f acil i t ate t he compu­
tation of q~, was assumed to be q~ = 0 . 

A summary of typical r esul t s obtai ned at every 
stage is given in Table 8-7. The final r esults of t he 
optimization, t hat is, t he opt imal pol icy of reser vo i r 
transfor mat ion, is presented in Table 8-8 and in Fi g. 
8-16. Stat istical proper ties of the water rel ease are 
given i n Table 8- 9. Fi gure 8-16 i ndi cates , as i n 
Example I, that t he opti ma l policy seemi ngl y fo llows 
no regul ar patt ern. However , analyzing the statistical 
propert ies of t he water re l ease leads t o the conclu ­
sion that the water release is, to a large degree, 
regular and that it is periodic. 

C/) 16 -c:: 14 Q) 
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Table 8-8. Optimal Policy of the State Transformation and Water 
Release. 

" " * .. * * T JT-1 5T-l JT ST QT FT 

1 13 27.0 12 25.0 3.03 4.36 
2 12 25 . 0 11 23 . 0 4.31 16.86 
3 11 23.0 10 21.0 2 . 93 30.14 
4 10 21.0 9 19.0 2.88 33.93 
5 9 19.0 8 17 . 0 2.99 38.11 
6 8 17.0 8 17.0 3.62 50.03 
7 8 17.0 7 15.0 3. 71 61.75 
8 7 15.0 6 13.0 3.46 64.91 
9 6 13.0 6 13.0 l. 72 68.98 

10 6 13.0 7 15.0 4.76 79.97 
11 7 15.0 7 15 . 0 3.58 91.33 
12 7 15.0 7 15. 0 2.16 95.21 
13 7 15.0 7 15.0 2.63 99.21 
14 7 15.0 7 15 .0 3.41 109.90 
15 7 15.0 6 13.0 3.08 121.46 
16 6 13.0 5 11.0 3.37 124.40 
17 5 11 .0 4 9 . 0 3.46 127 . 79 
18 4 9.0 4 9.0 3.47 137.99 
19 4 9.0 3 7.0 4.11 147.55 
20 3 7.0 3 7 . 0 1.40 150. 31 
21 3 7.0 2 5.0 3.55 153.50 
22 2 5.0 2 5 . 0 4.82 162.95 
23 2 5.0 1 3 . 0 4.34 171.75 
24 1 3.0 1 3.0 1.50 174.51 
25 1 3.0 1 3.0 1.95 178.20 
26 1 3.0 2 5.0 3. 77 187.61 
27 2 5.0 2 5.0 2.46 196.29 
28 2 5.0 2 5 . 0 2.30 l99.41 
29 2 5.0 2 5 . 0 l. 86 202.80 
30 2 5.0 3 7.0 3.60 211.68 
31 3 7.0 3 7.0 2.69 220.52 
32 3 7.0 3 7.0 3.03 223 .14 
33 3 7 . 0 \t 7.0 3.08 226 . 07 
34 3 7.0 4 9.0 3. 94 234. 68 
35 4 9.0 4 9.0 3.20 243.60 
36 4 9.0 4 9.0 2. 94 246.14 
37 4 9.0 4 9.0 3.16 248.90 
38 4 9.0 4 9.0 4.61 256.80 
39 4 9. 0 3 7.0 4.416 263.90 
40 3 7.0 3 7 . 0 3.51 266. 02 
41 3 7.0 3 7 .0 3.32 268.59 
42 3 7.0 5 11.0 4.11 276.37 
43 5 11.0 s 11.0 4.31 283.30 
44 5 11.0 5 11.0 3.03 285.56 
45 5 11.0 5 11.0 3.11 288.09 
46 5 11.0 6 13.0 3.98 295 . 54 
47 6 13.0 6 13.0 2. 73 302.90 
48 6 13. 0 6 13.0 2.60 305.22 

Table 8-9. Statistical Properties of the Optimal Water Release. 

p E R I 0 D 

l 2 3 4 

Q* 2.82 4 . 03 3.47 2 . 68 

a 0.637 0 .496 0 . 714 0.712 

2 a 0.405 0.246 0 . 510 0.507 
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Chapter IX 

SUMMAR¥, CONCLUSIONS, AND RECOMMENDATIONS 

Performance of a surface reservoir can be signifi­
cantly affect_ed by a connected large natural underground 
storage . Finding the optimal policy of water used from 
such a coupled surface-underground storage was the sub­
ject of this dissertation. To develop the method of 
determining the optimal policy, two main problems had 
to be solved: (1) Modelling of the system; and, (2) 
Optimization of water use . 

The hydrologic modelling of the system was ap­
proached from t he point of view that a convenient 
hydrologic model is needed to facil itat e the optimiza­
tion without the use of excessive computer time, and 
particularly, without t he requirement of huge computer 
memory. Within the framework of this study, only two 
hydrologic components of the river flow were treated in 
detail : (a) the exchange flow between the two stor­
ages, q~; and, (b) the r echarge to t he aquifer 

under specific conditions usually associated with karst 
areas . The exchange flow was descr ibed using the 
theory of hydrologic systems which is frequently used 
to treat the pr actical problems of river hydrographs. 
The exchange flow was assumed to be a function of the 
states of the two inter connected storages. The develop­
ment of the model was carried out in a generalized form. 
Then, the customary simplifications, which are usually 
made possible by the specific conditions found in river 
basins, were discussed. In addition, the implications 
of frequently made assumptions were examined. 

Recharge modelling can be regarded as inseparabl e 
from the modelling of the exchange flow. The process 
of recharge in karstified catchments is somewhat speci­
fic. The model developed in this study was shown t o be 
able t o accurately simulate the springflow of a karstic 
river. Yet, the amount of computation to identify the 
system was held at a minimum, because the use of only 
two parameters of the model was sufficient to explain 
over 90 percent of the springfiow variation. 

The optimization process in this study was neces­
sarily complex. It was sol ved by multilevel dynamic 
optimization. The problem was decomposed int o the re­
source a llocation problem and multistage dynamic opti­
mization. The resource allocation problem was treated 
as an equality constraint allocation problem t hought of 
as a condit ional allocat ion. 

Deterministic sequences were routed through the 
multistage dynamic optimization. The integration of 
the known components was carried out simultaneous l y 
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with the simulation of t he exchange flow. In this 
manner it 1;as possibl e to perform the optimization at 
a number of stages considered to be not computationally 
excessive . Stil l , the variations of the hydrol ogic 
series within t he time intervals r epresented by one 
stage are taken into account. 

The fact that the optimal policy is found from 
determi nistic data sequences should not be regarded as 
a drawback of the model. A similar technique was ex­
tensively used in the past under somewhat simpler con­
ditions, that is, with no under ground storage. 

The study was limited by the availability of test 
data. Actual evaluation of the optimal pol icy of water 

· rel ease was performed on two examples. Excej)t for the 
hydrologic sequences of Lake Powell, all the data had 
to be hypothesized. For that reason, the results pre­
sented herein should be viewed as a demonstration that 
the model is capable of ful f illing the stated obj ective. 
No conclusions concerning the actual operation of t he 
existing system at Lake Powell should be based on these 
results . 

The proposed model should be tested on actual 
coupl ed surface-underground storage systems i n karst , 
from which some experi ence concerning these systems 
can be gained. The most important aspects to be in­
vest igated are: 

1 . To what extent the performance of a natural 
hydrologic system will be affect ed by the syst em 
modification. 

response 
p l an­

other 
tO 

2. What projections concerning the system 
to the atmospheric processes can be made at t he 
ning stage of t he water r esources project. In 
words, what i s the worth of data coll ected prior 
the reservoir construction . 

3. What is the effect of the assumption of the 
init ial underground storage which was made to eli minate 
the second state variable from the computation. 

4. The process of determining the value of wat er 
is complex . Economic and other factors that determine 
water val ue are often unpredictabl e. Sensitivity 
anal ysi s should be performed to deter mine the possible 
effects of changes in economic factors. 



APPENDIX A 

Karstic springs are usually outl et s of large 
natural underground storages. To demonstrate the sig­
nificanc~ of these storages , three illustrative exam­
ples, compiled from various references, are presented 
in Tab l e A- 1 and Fig. A-1 . The underground stor age 
capad ties associated ld th (1) San Felipe Spring , (2) 
Goodenough Spr i ng, and (3) the Trebilnjica River 
Spring a re estimated assuming t hat t he hydrol ogic sys­
tems a r e linear, i . e ., that t he discharge is propor­
tional to the water content of the underground 
reservoir, so that th e falling limb of the hydrograph 
is expressed by Eq . 4-8. That is, 

qu(t ) = qu (t
0

} e:xp [-c(t- t
0
)) , (A-1) 

where qu( · ) is the underground outflow at the re­

spective times t and t
0

, and c is a constant t o 

be determined for every specific drainage basin under 
consideration . lvnen Eq . A-1 is integrated from time 
t

0 
= 0 to time t ~ ~ and multiplied by 86,400 t o 

convert the dischar ge per second i nto t he total daily 
flow , 

V = J 86,400 qu(t) dt = [86,400 qu(O)] /c , (A-2) 

t=O 

is obt ained. In Eq . A-2, V represents the tot al 
I~Clter content of the underground reservoir at time 
t = 0. 

The coefficient s , c , for the springs numbered (J) 
und (2) are t~ken f r om Knisel [1972), whi l e the co­
efficient of the Trebi~njica River Spring was estimated 
in this study, following a pattern similar to Knisel ' s . 
Time t 11·as t aken to correspond t o the maximum daily 
spring 0 discharge for the denoted time period . 

The mean daily discharge time equivalent is 
defined as 

t e 
(A-3) 

~o.•ith q 
u 

bei ng the aver age daily fl ow over the studied 

time period. Equation A-3 says t hat the mean daily 
discharge time equivalent is t he time that the mean 
daily flow would need to dis charge an amount of water 
equal to the underground storage determined by Eq . A-2 . 
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Another int eresting exampl e is given by Burdon 
and Safadi [1963) . It shows that the Ras-el-Ain 
kar s t ic spring in Syria issues from an underground 
storage which has a volume of approximately 7. 0 109 m3. 

Figur e A-1 depicts the mean daily discharge t ime 
equivalent in days versus percentage of the total out­
flow (denoted as "discharged storage percent" on the 
left-hand ordinate). From these curves it can be 

conc luded that the system (3) corresponding to th e 
Trebitn j ica River is fast r esponding as compared to 
the syst em (2) of Goodenough Spr ing. The same conclu­
sion could be drawn f rom a visual inspection of the 
respective hydrogrClphs . 

The Trebi! njica River Spring is presently sub­
merged under the water of a surface r eser voir created 
by a recently built dam. ~~en compared with the 
capacity of the surface storage of approximately 

1. 3 109 m3, the maximum ~ecorded underground storage 
that occurred in the per iod prior to the reservoir con­
struction (1954-1966), was about 13 . 5 percent to 
25.0 percent , depending on what estimate ~f the coef­
ficient c was t aken . Since the preceding analysis 
r eflects t he hydraulic conditions associ ated with 
extreme event s, i t should not be expected t hat the 
underground capacity augments t he existing surface 
s t orage by 13. 5 percent t o 25 .0 percent . Instead, 
these figures sh~uld be taken as an indicat ion of the 
existance of the underground s t orage. Accurate es­
t imates of the actual underground storages for this 
example are unavailable at this t ime . However, t hey 
are believed to be somewhere between 5. 0 percent and 
10.0 percent. 

Investigations of the bank storage of Lake Powell 
are based on an incompl ete set of dClta , since t he 
reservoir has yet to be filled . Neverthel ess, t~e 
presently avai la.ble obser vations show that the under­
ground s t orage is about 20.0 percent to 25 .0 per~ent 
of the surface s t orage . 

Significant underground storage associated with 
the Libby Reservoir in northwestern Montana was r e­
ported by Coffi n (1970). A preliminary investigation 
by an electric analog model est imated the bank s t orage 
t o be about 5. 0 percent of the surface capaci t y of 

five mil l ion acre-feet (approximate ly 6.1 109 m3). 



Table A· l. An Illustrative ExampJ e of Undergroun::l Storage Associated 1d th Karstic Springs. 

Spring & Location Aver age Period Maximum Date Coefficient Maximum Mean daily 
daily dai ly exhaustion underground discharge time 
Q.ow flow c storage equivalent t 

~ (0) v e 
qu 
3 [m3/s) (m3) (days] [m /s] 

San Felipe Spring 2. 25 1967 3.34 09 . 16 .6 7 0 .0121 23 .8 .1 06 123 

Del Rio, Texas USA 2.27 1961-1967 + + + + 

Goodenough Spring 3.02 1967 9.08 09.03.67 0.00463 169.0 106 650 

Comstock, Texas 3. 80 1930-1967 JS.J 10.10.58 0.00~63 343.0 106 1050 
USA 

The 'irebisnjica 49.0 1966 218.0 10.10 .66 A) 0.065 290.0 106 
68 

River Spring B) 0.121 156.0 106 36 

near Bi leca, 
44.4 1954-1966 24 7. 0 03.03 .65 :\) 0.065 328.0 106 86 

Yugoslavia* 
B) 0.12 1 177.0 106 46 

* Coefficient c refers to Case A of Section 5-4 , Eq. 5-28 and Case B of the same section Eq. 5-23. 

•oata unavail ah1e . 

80 
~ 

Q) 

01 
Cl 60 ... 
0 u; 
Q) 

01 ... 
0 40 .c 
0 
(/) 

0 

I. Son Felipe Springs, Del Rio, TeKas ,U.S.A. 

2. Goodenough Spring, Comstock, Texas, U.S.A. 
3. Trebisnjica R1ver Spring, Bileco, Yugoslavia 

A. Coefficient c=0.065 (Eq. 5-28) 
B. Coefficient c= 0. 121 (Eq. 5-23) 

20 

~ 0 

Q) 

40 g ... 
0 u; 
0 

60--6 
·;;; 
Q) 

a: 

80 
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days 

Fill. i\-l. Nean Daily Discharj!e Time Equivalent versus Discharged Volume . 
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natural recharge, and this recharge is distinct from 
classical aquifer recharge. A mathematical model for re­
charge to karst systems was developed as an autoregressive­
moving average (ARMA) model valid for linear systems. A 
method of estimating parameters of recharge model, the ARMA 
model , is presented. 
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